Skip to main content

Integrating Behavior and Microsimulation Models

  • Conference paper
  • First Online:
Agent Based Modelling of Urban Systems (ABMUS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10051))

Included in the following conference series:

  • 1923 Accesses


Microsimulations focus on modeling routine activities of individuals and have been used for modeling and planning urban systems like transportation, energy demand, and epidemiology. On the other hand, planning for emergency situations (e.g., disasters) needs to account for human behavior which is not routine or pre-planned but depends upon the current situation like the amount of physical damage or safety of family. Here, we focus on modeling the aftermath of a hypothetical detonation of an improvised nuclear device in Washington DC. We review various behavior models from the literature and provide motivation for our model which is conceptually based on the formalism of decentralized semi-Markov decision processes with communication, using the framework of options. We describe our approach for integrating behavior and microsimulation models where the behavior model specifies context-dependent behaviors (like looking for family members, sheltering, evacuation, and search and rescue) and the synthetic population provides information about demographics and infrastructures. We present results from a number of simulation runs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.

  2. 2.

  3. 3.


  1. Adiga, A., Mortveit, H.S., Wu, S.: Route stability in large-scale transportation systems. In: The Workshop on Multiagent Interaction Networks (MAIN), Held in Conjunction with AAMAS 2013, pp. 3–8, St. Paul, MN, USA, 7 May 2013

    Google Scholar 

  2. Ajzen, I.: From intentions to actions: a theory of planned behavior. In: Kuhl, J., Beckmann, J. (eds.) Action Control, pp. 11–39. Springer, Heidelberg (1985). doi:10.1007/978-3-642-69746-3_2

  3. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychol. Rev. 111(4), 1036–1060 (2004)

    Article  Google Scholar 

  4. Andersson, C.A., Bro, R.: The N-way toolbox for MATLAB. Chemometr. Intell. Lab. Syst. 52(1), 1–4 (2000)

    Article  Google Scholar 

  5. Barrett, C., Beckman, R., Berkbigler, K., Bisset, K., Bush, B., Campbell, K., Eubank, S., Henson, K., Hurford, J., Kubicek, D., Marathe, M., Romero, P., Smith, J., Smith, L., Speckman, P., Stretz, P., Thayer, G., Eeckhout, E., Williams, M.D.: TRANSIMS: Transportation analysis and simulation system. Technical report LA-UR-00-1725, Los Alamos National Laboratory (2001)

    Google Scholar 

  6. Barrett, C., Bisset, K., Chandan, S., Chen, J., Chungbaek, Y., Eubank, S., Evrenosoğlu, Y., Lewis, B., Lum, K., Marathe, A., Marathe, M., Mortveit, H., Parikh, N., Phadke, A., Reed, J., Rivers, C., Saha, S., Stretz, P., Swarup, S., Thorp, J., Vullikanti, A., Xie, D.: Planning, response in the aftermath of a large crisis: an agent-based informatics framework. In: Pasupathy, R., Kim, S.-H., Tolk, A., Hill, R., Kuhl, M.E. (eds.) Proceedings of the 2013 Winter Simulation Conference, pp. 1515–1526 (2013)

    Google Scholar 

  7. Bauckhage, C.: Robust tensor classifiers for color object recognition. In: Kamel, M., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 352–363. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74260-9_32

    Chapter  Google Scholar 

  8. Beckman, R.J., Baggerly, K.A., McKay, M.D.: Creating synthetic baseline populations. Transp. Res. Part A Policy Pract. 30(6), 415–429 (1996)

    Article  Google Scholar 

  9. Buddemeier, B.R., Valentine, J.E., Millage, K.K., Brandt, L.D., Region, N.C.: Key response planning factors for the aftermath of nuclear terrorism. Technical report LLNL-TR-512111, Lawrence Livermore National Lab, November 2011

    Google Scholar 

  10. Chandan, S., Saha, S., Barrett, C., Eubank, S., Marathe, A., Marathe, M., Swarup, S., Vullikanti, A.K.S.: Modeling the interaction between emergency communications and behavior in the aftermath of a disaster. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 476–485. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37210-0_52

    Chapter  Google Scholar 

  11. Das, T.K., Gosavi, A., Mahadevan, S., Marchalleck, N.: Solving semi-Markov decision problems using average reward reinforcement learning. Manag. Sci. 45, 560–574 (1999)

    Article  MATH  Google Scholar 

  12. Davidson, I., Gilpin, S., Carmichael, O., Walker, P.: Network discovery via constrained tensor analysis of fMRI data. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 194–202. ACM, New York (2013)

    Google Scholar 

  13. Drabek, T.E., Boggs, K.S.: Families in disaster: reactions and relatives. J. Marriage Fam. 30, 443–451 (1968)

    Article  Google Scholar 

  14. Duch, W., Oentaryo, R.J., Pasquier, M.: Cognitive architectures: where do we go from here? In: Proceedings of the 2008 Conference on Artificial General Intelligence 2008: Proceedings of the First AGI Conference, pp. 122–136. IOS Press, Amsterdam (2008)

    Google Scholar 

  15. Durham, D.P., Casman, E.A.: Incorporating individual health-protective decisions into disease transmission models: a mathematical framework. J. R. Soc. Interface 9(68), 562–570 (2012)

    Article  Google Scholar 

  16. Fishbein, M., Ajzen, I.: Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Addison-Wesley, Reading (1975)

    Google Scholar 

  17. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-intention model of agency. In: Proceedings of Intelligent Agents V. Agent Theories, Architectures, Languages: 5th International Workshop, ATAL 1998, Paris, France, July 1998, p. 630 (2000)

    Google Scholar 

  18. Huynh, N., Namazi-Rad, M.-R., Perez, P., Berryman, M.J., Chen, Q.: Generating a synthetic population in support of agent-based modeling of transportation in Sydney. In: 20th International Congress on Modelling and Simulation (MODSIM 2013), pp. 1357–1363 (2013)

    Google Scholar 

  19. Huynh, N.N., Cao, V., Denagamage, R.W., Berryman, M., Perez, P.: An agent based model for the simulation of road traffic and transport demand in a Sydney metropolitan area. In: Proceedings of the Eighth International Workshop on Agents in Traffic and Transportation, pp. 1–7, May 2014

    Google Scholar 

  20. Karimi, E., Schmitt, K., Akgunduz, A.: Effect of individual protective behaviors on influenza transmission: an agent-based model. Health Care Manag. Sci. 18(3), 318–333 (2015)

    Article  Google Scholar 

  21. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laird, J.E.: Extending the Soar cognitive architecture. In: Proceedings of the 2008 Conference on Artificial General Intelligence 2008: Proceedings of the First AGI Conference, pp. 224–235. IOS Press, Amsterdam (2008)

    Google Scholar 

  23. Lasker, R.D., Hunter, N.D., Francis, S.E.: With the Public’s Knowledge, We Can Make Sheltering in Place Possible. New York Academy of Medicine, New York (2007)

    Google Scholar 

  24. Lewis, B., Swarup, S., Bisset, K., Eubank, S., Marathe, M., Barrett, C.: A simulation environment for the dynamic evaluation of disaster preparedness policies. J. Public Health Manag. Pract. 19, S42–S48 (2013)

    Article  Google Scholar 

  25. Marathe, M., Mortveit, H., Parikh, N., Swarup, S.: Prescriptive analytics using synthetic information. In: Hsu, W.H. (ed) Emerging Trends in Predictive Analytics: Risk Management and Decision Making, pp. 1–19. IGI Global (2014)

    Google Scholar 

  26. Marr, D.: Vision: A Computational Approach. Freeman & Co., San Francisco (1982)

    Google Scholar 

  27. Mirzal, A., Furukawa, M.: Node-context network clustering using PARAFAC tensor decomposition. In: International Conference on Information & Communication Technology and Systems Discover the World’s Resea, pp. 283–288 (2010)

    Google Scholar 

  28. Padgham, L., Nagel, K., Singh, D., Chen, Q.: Integrating BDI agents into a MATSim simulation. In: Proceedings of the 21st European Conference on Artificial Intelligence, pp. 681–686, August 2014

    Google Scholar 

  29. Parikh, N., Swarup, S., Stretz, P.E., Rivers, C.M., Lewis, B.L., Marathe, M.V., Eubank, S.G., Barrett, C.L., Lum, K., Chungbaek, Y.: Modeling human behavior in the aftermath of a hypothetical improvised nuclear detonation. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), Saint Paul, MN, USA, pp. 949–956, May 2013

    Google Scholar 

  30. Parikh, N., Youssef, M., Swarup, S., Eubank, S.: Modeling the effect of transient populations on epidemics in Washington DC. Scientific Reports, 3: Art 3152, November 2013

    Google Scholar 

  31. Perry, R.W., Lindell, M.K.: Understanding citizen response to disasters with implications for terrorism. J. Contingencies Crisis Manag. 11(2), 49–60 (2003)

    Article  Google Scholar 

  32. Robinson, S.A., Stringer, M., Rai, V., Tondon, A.: GIS-integrated agent-based model of residential solar PV diffusion. In: 32nd USAEE/IAEE North American Conference, pp. 28–31 (2013)

    Google Scholar 

  33. Rosenstock, I.M.: Historical origins of the health belief model. Health Educ. Monogr. 2(4), 328–335 (1974)

    Article  Google Scholar 

  34. Rossetti, R.J., Bordini, R.H., Bazzan, A.L., Bampi, S., Liu, R., Vliet, D.V.: Using BDI agents to improve driver modelling in a commuter scenario. Transp. Res. Part C Emerg. Technol. 10(5–6), 373–398 (2002)

    Article  Google Scholar 

  35. Schwarz, N., Ernst, A.: Agent-based modeling of the diffusion of environmental innovations an empirical approach. Technol. Forecast. Soc. Chang. 76(4), 497–511 (2009). Evolutionary Methodologies for Analyzing Environmental Innovations and the Implications for Environmental Policy

    Article  Google Scholar 

  36. Shendarkar, A., Vasudevan, K., Lee, S., Son, Y.-J.: Crowd simulation for emergency response using BDI agents based on immersive virtual reality. Simul. Model. Pract. Theory 16(9), 1415–1429 (2008)

    Article  Google Scholar 

  37. Sutton, R., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning. Artif. Intell. 112(1–2), 181–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references


We thank our external collaborators and members of the Network Dynamics and Simulation Science Lab (NDSSL) for their suggestions and comments. This work is supported in part by DTRA CNIMS Contract HDTRA1-11-D-0016-0001, DTRA Grant HDTRA1-11-1-0016, NIH MIDAS Grant 5U01GM070694-11, NIH Grant 1R01GM109718, NSF NetSE Grant CNS-1011769, and NSF SDCI Grant OCI-1032677.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nidhi Parikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Parikh, N., Marathe, M., Swarup, S. (2017). Integrating Behavior and Microsimulation Models. In: Namazi-Rad, MR., Padgham, L., Perez, P., Nagel, K., Bazzan, A. (eds) Agent Based Modelling of Urban Systems. ABMUS 2016. Lecture Notes in Computer Science(), vol 10051. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51956-2

  • Online ISBN: 978-3-319-51957-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics