Cell Shape Analysis of Random Tessellations Based on Minkowski Tensors
- 2 Citations
- 889 Downloads
Abstract
To which degree are shape indices of individual cells of a tessellation characteristic for the stochastic process that generates them? Within the context of stochastic geometry and the physics of disordered materials, this corresponds to the question of relationships between different stochastic processes and models. In the context of applied image analysis of structured synthetic and biological materials, this question is central to the problem of inferring information about the formation process from spatial measurements of the resulting random structure. This chapter addresses this question by a theory-based simulation study of cell shape indices derived from tensor-valued intrinsic volumes, or Minkowski tensors, for a variety of common tessellation models. We focus on the relationship between two indices: (1) the dimensionless ratio 〈V 〉2∕〈A〉3 of empirical average cell volumes to areas, and (2) the degree of cell elongation quantified by the eigenvalue ratio 〈β10,2〉 of the interface Minkowski tensors W10,2. Simulation data for these quantities, as well as for distributions thereof and for correlations of cell shape and cell volume, are presented for Voronoi mosaics of the Poisson point process, determinantal and permanental point processes, Gibbs hard-core processes of spheres, and random sequential absorption processes as well as for Laguerre tessellations of configurations of polydisperse spheres, STIT-tessellations, and Poisson hyperplane tessellations. These data are complemented by experimental 3D image data of mechanically stable ellipsoid configurations, area-minimising liquid foam models, and mechanically stable crystalline sphere configurations. We find that, not surprisingly, the indices 〈V 〉2∕〈A〉3 and 〈β10,2〉 are not sufficient to unambiguously identify the generating process even amongst this limited set of processes. However, we identify significant differences of these shape indices between many of the tessellation models listed above. Therefore, given a realization of a tessellation (e.g., an experimental image), these shape indices are able to narrow the choice of possible generating processes, providing a powerful tool which can be further strengthened by considering density-resolved volume-shape correlations.
Keywords
Point Process Voronoi Diagram Shape Index Voronoi Cell Packing FractionNotes
Acknowledgements
We thank Andy Kraynik, Markus Spanner, and Richard Schielein for their data of the monodisperse foam, the equilibrium hard-sphere liquids, and the crystalline sphere packings, respectively. We also thank Felix Ballani for his software simulating the typical cell of a Poisson hyperplane tessellation. We thank Markus Kiderlen for valuable discussions and suggestions. We also thank the German science foundation (DFG) for the grants SCHR1148/3, HU1874/3-2, LA965/6-2, and ME1361/11 awarded as part of the DFG-Forschergruppe “Geometry and Physics of Spatial Random Systems”.
References
- 1.B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957)CrossRefGoogle Scholar
- 2.S. Alesker, Continuous rotation invariant valuations on convex sets. Ann. Math. 149(3), 977 (1999)Google Scholar
- 3.S. Alesker, Description of continuous isometry covariant valuations on convex sets. Geom. Dedicata. 74(3), 241 (1999)Google Scholar
- 4.T. Aste, T. Di Matteo, Emergence of Gamma distributions in granular materials and packing models. Phys. Rev. E 77, 021309 (2008)CrossRefGoogle Scholar
- 5.T. Aste, T. Di Matteo, M. Saadatfar, T.J. Senden, M. Schröter, H.L. Swinney, An invariant distribution in static granular media. Europhys. Lett. 79, 24003 (2007)CrossRefGoogle Scholar
- 6.F. Baccelli, B. Blaszczyszyn, Stochastic geometry and wireless networks I: theory. Found. Trends Netw. 3, 249–449 (2009)CrossRefzbMATHGoogle Scholar
- 7.F. Baccelli, B. Blaszczyszyn, Stochastic geometry and wireless networks II: applications. Found. Trends Netw. 4, 1–312 (2009)CrossRefzbMATHGoogle Scholar
- 8.A. Baddeley, R. Turner, spatstat: an R package for analyzing spatial point patterns. J. Stat. Softw. 12(6), 1 (2005)Google Scholar
- 9.M. Barbosa, R. Natoli, K. Valter, J. Provis, T. Maddess, Integral-geometry characterization of photobiomodulation effects on retinal vessel morphology. Biomed. Opt. Express 5(7), 2317 (2014)Google Scholar
- 10.V. Baumstark, G. Last, Some distributional results for Poisson Voronoi tessellations. Adv. Appl. Prob. 39, 16–40 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.V. Baumstark, G. Last, Gamma distributions for stationary poisson flat processes. Adv. Appl. Prob. 41, 911–939 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.J. Becker, G. Grun, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey, Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2, 59 (2003)CrossRefGoogle Scholar
- 13.C. Beisbart, M.S. Barbosa, H. Wagner, L.d.F. Costa, Extended morphometric analysis of neuronal cells with Minkowski valuations. Eur. Phys. J. B 52(4), 531 (2006)Google Scholar
- 14.R. Berman, Determinantal point processes and Fermions on complex manifolds: large deviations and bosonization. Commun. Math. Phys. 327(1), 1 (2014)Google Scholar
- 15.K.A. Brakke, The surface evolver. Exp. Math. 1(2), 141 (1992)Google Scholar
- 16.S.N. Chiu, D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and Its Applications (Wiley, New York, 2013)CrossRefzbMATHGoogle Scholar
- 17.S. Colombi, D. Pogosyan, T. Souradeep, Tree structure of a percolating Universe. Phys. Rev. Lett. 85, 5515 (2000)CrossRefGoogle Scholar
- 18.J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups, in Grundlehren der mathematischen Wissenschaften, vol. 290 (Springer, New York, 1999)Google Scholar
- 19.R. Cowan, New classes of random tessellations arising from iterative division of cells. Adv. Appl. Prob. 42, 26–47 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.D.J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes. Probability and Its Applications (Springer, New York, 2003)zbMATHGoogle Scholar
- 21.N. Deng, W. Zhou, M. Haenggi, The Ginibre point process as a model for wireless networks with repulsion. IEEE Tran. Wirel. Commun. 14(1), 107 (2015)Google Scholar
- 22.M.R. Dennis, Nodal densities of planar Gaussian random waves. Eur. Phys. J.-Spec. Top. 145(1), 191 (2007)Google Scholar
- 23.A. Ducout, F.R. Bouchet, S. Colombi, D. Pogosyan, S. Prunet, Non-Gaussianity and Minkowski functionals: forecasts for Planck. Mon. Not. R. Astron. Soc. 429(3), 2104 (2013)Google Scholar
- 24.R. Erban, S.J. Chapman, Time scale of random sequential adsorption. Phys. Rev. E 75(4), 041116 (2007)Google Scholar
- 25.M.E. Evans, A.M. Kraynik, D.A. Reinelt, K. Mecke, G.E. Schröder-Turk, Network-like propagation of cell-level stress in sheared random foams. Phys. Rev. Lett. 111, 138301 (2013)CrossRefGoogle Scholar
- 26.E.D. Feigelson, G.J. Babu (eds.), Statistical Challenges in Modern Astronomy (Springer, New York, 1992)Google Scholar
- 27.C. Gay, C. Pichon, D. Pogosyan, Non-Gaussian statistics of critical sets in 2D and 3D: Peaks, voids, saddles, genus, and skeleton. Phys. Rev. D 85, 023011 (2012)CrossRefGoogle Scholar
- 28.D. Göring, M.A. Klatt, C. Stegmann, K. Mecke, Morphometric analysis in gamma-ray astronomy using Minkowski functionals. Astron. Astrophys. 555, A38 (2013)CrossRefGoogle Scholar
- 29.H. Hadwiger, Beweis eines Funktionalsatzes für konvexe Körper. Abh. Math. Sem. Univ. Hamburg 17(1), 69 (1951)Google Scholar
- 30.T.C. Hales, A proof of the Kepler conjecture. Ann. Math. 162, 1065 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 31.H. Hansen-Goos, K. Mecke, Fundamental measure theory for inhomogeneous fluids of nonspherical hard particles. Phys. Rev. Lett. 102, 018302 (2009)CrossRefGoogle Scholar
- 32.S. Hilgenfeldt, A.M. Kraynik, S.A. Koehler, H.A. Stone, An accurate von Neumann’s law for three-dimensional foams. Phys. Rev. Lett. 86(12), 2685–2688 (2001)CrossRefGoogle Scholar
- 33.J. Hörrmann, D. Hug, M.A. Klatt, K. Mecke, Minkowski tensor density formulas for Boolean models. Adv. Appl. Math. 55(0), 48 (2014)Google Scholar
- 34.J.B. Hough, M. Krishnapur, Y. Peres, B. Virág, Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 35.M.L. Huber, R.L. Wolpert, Likelihood-based inference for Matérn type-III repulsive point processes. Adv. Appl. Probab. 41, 958–977 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 36.D. Hug, R. Schneider, Typical cells in Poisson hyperplane tessellations. Discrete Comput. Geom. 38(2), 305–319 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 37.D. Hug, M. Reitzner, R. Schneider, Large Poisson-Voronoi cells and Crofton cells. Adv. Appl. Probab. 36(3), 667–690 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 38.J. Illian, A. Penttinen, H. Stoyan, D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns: Illian/Statistical Analysis and Modelling of Spatial Point Patterns (Wiley, Chichester, 2007)Google Scholar
- 39.M. Kac, Can one hear the shape of a drum? Am. Math. Mon. 73(4), 1–23 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
- 40.S.C. Kapfer, Morphometry and physics of particulate and porous media, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2011Google Scholar
- 41.S.C. Kapfer, W. Mickel, F.M. Schaller, M. Spanner, C. Goll, T. Nogawa, N. Ito, K. Mecke, G.E. Schröder-Turk, Local anisotropy of fluids using Minkowski tensors. J. Stat. Mech. Theor. Exp. 2010(11), P11010 (2010)Google Scholar
- 42.S.C. Kapfer, W. Mickel, K. Mecke, G.E. Schröder-Turk, Jammed spheres: Minkowski tensors reveal onset of local crystallinity. Phys. Rev. E 85, 030301 (2012)CrossRefGoogle Scholar
- 43.M. Kerscher, K. Mecke, J. Schmalzing, C. Beisbart, T. Buchert, H. Wagner, Morphological fluctuations of large-scale structure: the PSCz survey. Astron. Astrophys. 373, 1 (2001)CrossRefGoogle Scholar
- 44.M. Kiderlen, M. Hörig, Matérn’s hard core models of types I and II. CSGB (2013, preprint)Google Scholar
- 45.M.A. Klatt, Morphometry of random spatial structures in physics, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2016Google Scholar
- 46.M.A. Klatt, S. Torquato, Characterization of maximally random jammed sphere packings: Voronoi correlation functions. Phys. Rev. E 90, 052120 (2014)CrossRefGoogle Scholar
- 47.A.M. Kraynik, Foam structure: from soap froth to solid foams. MRS Bull. 28(04), 275–278 (2003)CrossRefGoogle Scholar
- 48.A.M. Kraynik, The structure of random foam. Adv. Eng. Mater. 8(9), 900 (2006)Google Scholar
- 49.A.M. Kraynik, D.A. Reinelt, F. van Swol, Structure of random monodisperse foam. Phys. Rev. E 67, 031403 (2003)CrossRefGoogle Scholar
- 50.A.M. Kraynik, D.A. Reinelt, F. van Swol, Structure of Random Foam. Phys. Rev. Lett. 93, 208301 (2004)CrossRefGoogle Scholar
- 51.G. Last, Stationary partitions and Palm probabilities. Adv. Appl. Prob. 38, 602–620 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 52.G. Last, M.D. Penrose, Lectures on the Poisson Process (Cambridge University Press, Cambridge, to appear). http://www.math.kit.edu/stoch/~last/seite/lehrbuch_poissonp/de
- 53.G. Last, G. Peccati, M. Schulte, Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. Prob. Theory Related Fields. 165, 667–723 (2016)CrossRefzbMATHGoogle Scholar
- 54.C. Lautensack, Random Laguerre Tessellations, Ph.D. thesis, Universität Karlsruhe, 2007Google Scholar
- 55.F. Lavancier, J. Møller, E. Rubak, Determinantal point process models and statistical inference. J. R. Stat. Soc. B 77(4), 853–877 (2015)MathSciNetCrossRefGoogle Scholar
- 56.E.A. Lazar, J.K. Mason, R.D. MacPherson, D.J. Srolovitz, Statistical topology of three-dimensional Poisson-Voronoi cells and cell boundary networks. Phys. Rev. E 88, 063309 (2013)CrossRefGoogle Scholar
- 57.B.D. Lubachevsky, F.H. Stillinger, Geometric properties of random disk packings. J. Stat. Phys. 60(5–6), 561 (1990)Google Scholar
- 58.O. Macchi, The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7(1), 83–122 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
- 59.V.N. Manoharan, Colloidal matter: packing, geometry, and entropy. Science 349(6251), 1253751 (2015)Google Scholar
- 60.H. Mantz, K. Jacobs, K. Mecke, Utilising Minkowski functionals for image analysis. J. Stat. Mech. 12, P12015 (2008)CrossRefGoogle Scholar
- 61.S. Mase, J. Møller, D. Stoyan, R.P. Waagepetersen, G. Döge, Packing densities and simulated tempering for hard core Gibbs point processes. Ann. Inst. Statist. Math. 53, 661–680 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 62.P. McCullagh, J. Møller, The permanental process. Adv. Appl. Prob. 38, 873–888 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 63.P. McMullen, Isometry covariant valuations on convex bodies. Rend. Circ. Mat. Palermo (2) Suppl. 50, 259 (1997)Google Scholar
- 64.K. Mecke, Morphological characterization of patterns in reaction-diffusion systems. Phys. Rev. E 53(5), 4794 (1996)Google Scholar
- 65.K. Mecke, Integral geometry and statistical physics. Int. J. Mod. Phys. B 12, 861 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 66.K. Mecke, D. Stoyan, Statistical Physics and Spatial Statistics – The Art of Analyzing and Modeling Spatial Structures and Pattern Formation. Lecture Notes in Physics, vol. 554, 1st edn. (Springer, Berlin, 2000)Google Scholar
- 67.J. Mecke, W. Nagel, V. Weiss, Some distributions for I-segments of planar random homogeneous STIT tessellations. Math. Nachr. 284, 1483–1495 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 68.W. Mickel, G.E. Schröder-Turk, K. Mecke, Tensorial Minkowski functionals of triply periodic minimal surfaces. Interface Focus 2(5), 623–633 (2012)CrossRefGoogle Scholar
- 69.W. Mickel, S.C. Kapfer, G.E. Schröder-Turk, K. Mecke, Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. J. Chem. Phys. 138(4), 044501 (2013)Google Scholar
- 70.R. Miles, Poisson flats in Euclidean spaces. Part ii: Homogeneous poisson flats and complementary theorem. Adv. Appl. Prob. 3, 1–43 (1971)zbMATHGoogle Scholar
- 71.J. Møller, Lectures on Random Voronoi Tessellations. Lecture Notes in Statistics, vol. 87 (Springer, New York, 1994)Google Scholar
- 72.J. Møller, R. Plenge Waagepetersen, Statistical Inference and Simulation for Spatial Point Processes. C& H/CRC Monographs on Statistics & Applied Probability, vol. 100 (Chapman and Hall/CRC, Boca Raton, 2003)Google Scholar
- 73.J. Møller, D. Stoyan, Stochastic geometry and random tessellations. Tech. rep., Department of Mathematical Sciences, Aalborg University, 2007Google Scholar
- 74.J. Møller, S. Zuyev, Gamma-type results and other related properties of poisson processes. Adv. Appl. Prob. 28, 662–673 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
- 75.J. Møller, M.L. Huber, R.L. Wolpert, Perfect simulation and moment properties for the Matérn type III process. Stoch. Proc. Appl. 120(11), 2142–2158 (2010)CrossRefzbMATHGoogle Scholar
- 76.W. Nagel, V. Weiss, Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration. Adv. Appl. Probab. 37(4), 859 (2005)Google Scholar
- 77.W. Nagel, V. Weiss, Mean values for homogeneous STIT tessellations in 3D. Image Anal. Stereol. 27, 29–37 (2008)CrossRefzbMATHGoogle Scholar
- 78.X.X. Nguyen, H. Zessin, Integral and differential characterizations of the Gibbs process. Math. Nachr. 88, 105–115 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
- 79.A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley Series in Probability and Statistics (Wiley, Chichester, 2009)Google Scholar
- 80.E. Pineda, P. Bruna, D. Crespo, Cell size distribution in random tessellations of space. Phys. Rev. E 70, 066119 (2004)CrossRefGoogle Scholar
- 81.C. Preston, Random Fields. Lecture Notes in Mathematics, vol. 534 (Springer, Berlin, 1976)Google Scholar
- 82.C. Redenbach, Microstructure models for cellular materials. Comput. Mater. Sci. 44(4), 1397–1407 (2009)CrossRefGoogle Scholar
- 83.D. Ruelle, Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 18, 127–159 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
- 84.F.M. Schaller, S.C. Kapfer, M.E. Evans, M.J. Hoffmann, T. Aste, M. Saadatfar, K. Mecke, G.W. Delaney, G.E. Schröder-Turk, Set Voronoi diagrams of 3d assemblies of aspherical particles. Philos. Mag. 93, 3993–4017 (2013)CrossRefGoogle Scholar
- 85.F.M. Schaller, M. Neudecker, M. Saadatfar, G. Delaney, K. Mecke, G.E. Schröder-Turk, M. Schröter, Tomographic analysis of jammed ellipsoid packings. AIP Conf. Proc. 1542, 377–380 (2013)CrossRefGoogle Scholar
- 86.F.M. Schaller, S.C. Kapfer, J.E. Hilton, P.W. Cleary, K. Mecke, C. De Michele, T. Schilling, M. Saadatfar, M. Schröter, G.W. Delaney, G.E. Schröder-Turk, Non-universal Voronoi cell shapes in amorphous ellipsoid packs. Europhys. Lett. 111, 24002 (2015)CrossRefGoogle Scholar
- 87.F.M. Schaller, M. Neudecker, M. Saadatfar, G.W. Delaney, G.E. Schröder-Turk, M. Schröter, Local origin of global contact numbers in frictional ellipsoid packings. Phys. Rev. Lett. 114, 158001 (2015)CrossRefGoogle Scholar
- 88.F.M. Schaller, R.F.B. Weigel, S.C. Kapfer, Densest local structures of uniaxial ellipsoids. Phys. Rev. X 6, 041032 (2016)Google Scholar
- 89.J. Schmalzing, T. Buchert, A.L. Melott, V. Sahni, B.S. Sathyaprakash, S.F. Shandarin, Disentangling the cosmic web. I. Morphology of isodensity contours. Astrophys. J. 526(2), 568 (1999)Google Scholar
- 90.R. Schneider, W. Weil, Stochastic and Integral Geometry (Probability and Its Applications) (Springer, Berlin, 2008)CrossRefzbMATHGoogle Scholar
- 91.C. Scholz, G.E. Schröder-Turk, K. Mecke, Pattern-fluid interpretation of chemical turbulence. Phys. Rev. E 91, 042907 (2015)CrossRefGoogle Scholar
- 92.C. Scholz, F. Wirner, M.A. Klatt, D. Hirneise, G.E. Schröder-Turk, K. Mecke, C. Bechinger, Direct relations between morphology and transport in boolean models. Phys. Rev. E 92, 043023 (2015)CrossRefGoogle Scholar
- 93.T. Schreiber, C. Thäle, Intrinsic volumes of the maximal polytope process in higher dimensional STIT tessellations. Stoch. Process. Appl. 121, 989–1012 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 94.T. Schreiber, C. Thäle, Second-order theory for iteration stable tessellations. Probab. Math. Stat. 32, 281–300 (2012)MathSciNetzbMATHGoogle Scholar
- 95.G.E. Schröder-Turk, S. Kapfer, B. Breidenbach, C. Beisbart, K. Mecke, Tensorial Minkowski functionals and anisotropy measures for planar patterns. J. Microsc. 238(1), 57 (2010)Google Scholar
- 96.G.E. Schröder-Turk, W. Mickel, S.C. Kapfer, M.A. Klatt, F.M. Schaller, M.J.F. Hoffmann, N. Kleppmann, P. Armstrong, A. Inayat, D. Hug, M. Reichelsdorfer, W. Peukert, W. Schwieger, K. Mecke, Minkowski tensor shape analysis of cellular, granular and porous structures. Adv. Mater. 23(22–23), 2535 (2011)Google Scholar
- 97.G.E. Schröder-Turk, R. Schielein, S.C. Kapfer, F.M. Schaller, G.W. Delaney, T. Senden, M. Saadatfar, T. Aste, K. Mecke, Minkowski tensors and local structure metrics: amorphous and crystalline sphere packings. AIP Conf. Proc. 1542(1), 349 (2013)Google Scholar
- 98.G.E. Schröder-Turk, W. Mickel, S.C. Kapfer, F.M. Schaller, B. Breidenbach, D. Hug, K. Mecke, Minkowski tensors of anisotropic spatial structure. New J. Phys. 15(8), 083028 (2013)Google Scholar
- 99.B. Schuetrumpf, M.A. Klatt, K. Iida, J. Maruhn, K. Mecke, P.G. Reinhard, Time-dependent Hartree-Fock approach to nuclear “pasta” at finite temperature. Phys. Rev. C 87, 055805 (2013)CrossRefGoogle Scholar
- 100.B. Schuetrumpf, M.A. Klatt, K. Iida, G.E. Schröder-Turk, J.A. Maruhn, K. Mecke, P.G. Reinhard, Appearance of the single gyroid network phase in “nuclear pasta” matter. Phys. Rev. C 91, 025801 (2015)CrossRefGoogle Scholar
- 101.V. Senthil Kumar, V. Kumaran, Voronoi cell volume distribution and configurational entropy of hard-spheres. J. Chem. Phys. 123, 114501 (2005)CrossRefGoogle Scholar
- 102.T. Shirai, Y. Takahashi, Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes. J. Funct. Anal. 205(2), 414–463 (2003)Google Scholar
- 103.P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784 (1983)CrossRefGoogle Scholar
- 104.J. Stienen, Die Vergröberung von Karbiden in reinen Eisen-Kohlenstoff-Staehlen, Ph.D. thesis, RWTH Aachen, 1982Google Scholar
- 105.D. Stoyan, M. Schlather, Random sequential adsorption: relationship to dead leaves and characterization of variability. J. Stat. Phys. 100, 969–979 (2000)CrossRefzbMATHGoogle Scholar
- 106.J. Talbot, G. Tarjus, P.R. Van Tassel, P. Viot, From car parking to protein adsorption: an overview of sequential adsorption processes. Colloids Surf. A 165(1), 287–324 (2000)CrossRefGoogle Scholar
- 107.J. Teichmann, F. Ballani, K.G. van den Boogaart, Generalizations of Matern’s hard-core point processes. Spat. Stat. 9, 33–53 (2013)CrossRefGoogle Scholar
- 108.S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Interdisciplinary Applied Mathematics. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
- 109.S. Torquato, F.H. Stillinger, Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces. Phys. Rev. E 73, 031106 (2006)MathSciNetCrossRefGoogle Scholar
- 110.R. Wittmann, M. Marechal, K. Mecke, Fundamental measure theory for smectic phases: scaling behavior and higher order terms. J. Chem. Phys. 141(6), 064103 (2014)Google Scholar
- 111.W.W. Wood, J.D. Jacobson, Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres. J. Chem. Phys. 27, 1207–1208 (1957)CrossRefGoogle Scholar
- 112.G. Zhang, S. Torquato, Precise algorithm to generate random sequential addition of hard hyperspheres at saturation. Phys. Rev. E 88, 053312 (2013)CrossRefGoogle Scholar
- 113.C. Zong, Sphere Packings. Universitext (Springer, New York, 1999)zbMATHGoogle Scholar
- 114.S. Zuyev, Stopping sets: gamma-type results and hitting properties. Adv. Appl. Prob. 31, 355–366 (1999)MathSciNetCrossRefzbMATHGoogle Scholar