Skip to main content

Cell Shape Analysis of Random Tessellations Based on Minkowski Tensors

Part of the Lecture Notes in Mathematics book series (LNM,volume 2177)

Abstract

To which degree are shape indices of individual cells of a tessellation characteristic for the stochastic process that generates them? Within the context of stochastic geometry and the physics of disordered materials, this corresponds to the question of relationships between different stochastic processes and models. In the context of applied image analysis of structured synthetic and biological materials, this question is central to the problem of inferring information about the formation process from spatial measurements of the resulting random structure. This chapter addresses this question by a theory-based simulation study of cell shape indices derived from tensor-valued intrinsic volumes, or Minkowski tensors, for a variety of common tessellation models. We focus on the relationship between two indices: (1) the dimensionless ratio 〈V2∕〈A3 of empirical average cell volumes to areas, and (2) the degree of cell elongation quantified by the eigenvalue ratio 〈β 1 0,2〉 of the interface Minkowski tensors W 1 0,2. Simulation data for these quantities, as well as for distributions thereof and for correlations of cell shape and cell volume, are presented for Voronoi mosaics of the Poisson point process, determinantal and permanental point processes, Gibbs hard-core processes of spheres, and random sequential absorption processes as well as for Laguerre tessellations of configurations of polydisperse spheres, STIT-tessellations, and Poisson hyperplane tessellations. These data are complemented by experimental 3D image data of mechanically stable ellipsoid configurations, area-minimising liquid foam models, and mechanically stable crystalline sphere configurations. We find that, not surprisingly, the indices 〈V2∕〈A3 and 〈β 1 0,2〉 are not sufficient to unambiguously identify the generating process even amongst this limited set of processes. However, we identify significant differences of these shape indices between many of the tessellation models listed above. Therefore, given a realization of a tessellation (e.g., an experimental image), these shape indices are able to narrow the choice of possible generating processes, providing a powerful tool which can be further strengthened by considering density-resolved volume-shape correlations.

Keywords

  • Point Process
  • Voronoi Diagram
  • Shape Index
  • Voronoi Cell
  • Packing Fraction

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-51951-7_13
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-51951-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4
Fig. 13.5
Fig. 13.6
Fig. 13.7
Fig. 13.8
Fig. 13.9
Fig. 13.10
Fig. 13.11

References

  1. B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957)

    CrossRef  Google Scholar 

  2. S. Alesker, Continuous rotation invariant valuations on convex sets. Ann. Math. 149(3), 977 (1999)

    Google Scholar 

  3. S. Alesker, Description of continuous isometry covariant valuations on convex sets. Geom. Dedicata. 74(3), 241 (1999)

    Google Scholar 

  4. T. Aste, T. Di Matteo, Emergence of Gamma distributions in granular materials and packing models. Phys. Rev. E 77, 021309 (2008)

    CrossRef  Google Scholar 

  5. T. Aste, T. Di Matteo, M. Saadatfar, T.J. Senden, M. Schröter, H.L. Swinney, An invariant distribution in static granular media. Europhys. Lett. 79, 24003 (2007)

    CrossRef  Google Scholar 

  6. F. Baccelli, B. Blaszczyszyn, Stochastic geometry and wireless networks I: theory. Found. Trends Netw. 3, 249–449 (2009)

    CrossRef  MATH  Google Scholar 

  7. F. Baccelli, B. Blaszczyszyn, Stochastic geometry and wireless networks II: applications. Found. Trends Netw. 4, 1–312 (2009)

    CrossRef  MATH  Google Scholar 

  8. A. Baddeley, R. Turner, spatstat: an R package for analyzing spatial point patterns. J. Stat. Softw. 12(6), 1 (2005)

    Google Scholar 

  9. M. Barbosa, R. Natoli, K. Valter, J. Provis, T. Maddess, Integral-geometry characterization of photobiomodulation effects on retinal vessel morphology. Biomed. Opt. Express 5(7), 2317 (2014)

    Google Scholar 

  10. V. Baumstark, G. Last, Some distributional results for Poisson Voronoi tessellations. Adv. Appl. Prob. 39, 16–40 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. V. Baumstark, G. Last, Gamma distributions for stationary poisson flat processes. Adv. Appl. Prob. 41, 911–939 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. J. Becker, G. Grun, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey, Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2, 59 (2003)

    CrossRef  Google Scholar 

  13. C. Beisbart, M.S. Barbosa, H. Wagner, L.d.F. Costa, Extended morphometric analysis of neuronal cells with Minkowski valuations. Eur. Phys. J. B 52(4), 531 (2006)

    Google Scholar 

  14. R. Berman, Determinantal point processes and Fermions on complex manifolds: large deviations and bosonization. Commun. Math. Phys. 327(1), 1 (2014)

    Google Scholar 

  15. K.A. Brakke, The surface evolver. Exp. Math. 1(2), 141 (1992)

    Google Scholar 

  16. S.N. Chiu, D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and Its Applications (Wiley, New York, 2013)

    CrossRef  MATH  Google Scholar 

  17. S. Colombi, D. Pogosyan, T. Souradeep, Tree structure of a percolating Universe. Phys. Rev. Lett. 85, 5515 (2000)

    CrossRef  Google Scholar 

  18. J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups, in Grundlehren der mathematischen Wissenschaften, vol. 290 (Springer, New York, 1999)

    Google Scholar 

  19. R. Cowan, New classes of random tessellations arising from iterative division of cells. Adv. Appl. Prob. 42, 26–47 (2010)

    MathSciNet  CrossRef  MATH  Google Scholar 

  20. D.J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes. Probability and Its Applications (Springer, New York, 2003)

    MATH  Google Scholar 

  21. N. Deng, W. Zhou, M. Haenggi, The Ginibre point process as a model for wireless networks with repulsion. IEEE Tran. Wirel. Commun. 14(1), 107 (2015)

    Google Scholar 

  22. M.R. Dennis, Nodal densities of planar Gaussian random waves. Eur. Phys. J.-Spec. Top. 145(1), 191 (2007)

    Google Scholar 

  23. A. Ducout, F.R. Bouchet, S. Colombi, D. Pogosyan, S. Prunet, Non-Gaussianity and Minkowski functionals: forecasts for Planck. Mon. Not. R. Astron. Soc. 429(3), 2104 (2013)

    Google Scholar 

  24. R. Erban, S.J. Chapman, Time scale of random sequential adsorption. Phys. Rev. E 75(4), 041116 (2007)

    Google Scholar 

  25. M.E. Evans, A.M. Kraynik, D.A. Reinelt, K. Mecke, G.E. Schröder-Turk, Network-like propagation of cell-level stress in sheared random foams. Phys. Rev. Lett. 111, 138301 (2013)

    CrossRef  Google Scholar 

  26. E.D. Feigelson, G.J. Babu (eds.), Statistical Challenges in Modern Astronomy (Springer, New York, 1992)

    Google Scholar 

  27. C. Gay, C. Pichon, D. Pogosyan, Non-Gaussian statistics of critical sets in 2D and 3D: Peaks, voids, saddles, genus, and skeleton. Phys. Rev. D 85, 023011 (2012)

    CrossRef  Google Scholar 

  28. D. Göring, M.A. Klatt, C. Stegmann, K. Mecke, Morphometric analysis in gamma-ray astronomy using Minkowski functionals. Astron. Astrophys. 555, A38 (2013)

    CrossRef  Google Scholar 

  29. H. Hadwiger, Beweis eines Funktionalsatzes für konvexe Körper. Abh. Math. Sem. Univ. Hamburg 17(1), 69 (1951)

    Google Scholar 

  30. T.C. Hales, A proof of the Kepler conjecture. Ann. Math. 162, 1065 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  31. H. Hansen-Goos, K. Mecke, Fundamental measure theory for inhomogeneous fluids of nonspherical hard particles. Phys. Rev. Lett. 102, 018302 (2009)

    CrossRef  Google Scholar 

  32. S. Hilgenfeldt, A.M. Kraynik, S.A. Koehler, H.A. Stone, An accurate von Neumann’s law for three-dimensional foams. Phys. Rev. Lett. 86(12), 2685–2688 (2001)

    CrossRef  Google Scholar 

  33. J. Hörrmann, D. Hug, M.A. Klatt, K. Mecke, Minkowski tensor density formulas for Boolean models. Adv. Appl. Math. 55(0), 48 (2014)

    Google Scholar 

  34. J.B. Hough, M. Krishnapur, Y. Peres, B. Virág, Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  35. M.L. Huber, R.L. Wolpert, Likelihood-based inference for Matérn type-III repulsive point processes. Adv. Appl. Probab. 41, 958–977 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  36. D. Hug, R. Schneider, Typical cells in Poisson hyperplane tessellations. Discrete Comput. Geom. 38(2), 305–319 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  37. D. Hug, M. Reitzner, R. Schneider, Large Poisson-Voronoi cells and Crofton cells. Adv. Appl. Probab. 36(3), 667–690 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  38. J. Illian, A. Penttinen, H. Stoyan, D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns: Illian/Statistical Analysis and Modelling of Spatial Point Patterns (Wiley, Chichester, 2007)

    Google Scholar 

  39. M. Kac, Can one hear the shape of a drum? Am. Math. Mon. 73(4), 1–23 (1966)

    MathSciNet  CrossRef  MATH  Google Scholar 

  40. S.C. Kapfer, Morphometry and physics of particulate and porous media, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2011

    Google Scholar 

  41. S.C. Kapfer, W. Mickel, F.M. Schaller, M. Spanner, C. Goll, T. Nogawa, N. Ito, K. Mecke, G.E. Schröder-Turk, Local anisotropy of fluids using Minkowski tensors. J. Stat. Mech. Theor. Exp. 2010(11), P11010 (2010)

    Google Scholar 

  42. S.C. Kapfer, W. Mickel, K. Mecke, G.E. Schröder-Turk, Jammed spheres: Minkowski tensors reveal onset of local crystallinity. Phys. Rev. E 85, 030301 (2012)

    CrossRef  Google Scholar 

  43. M. Kerscher, K. Mecke, J. Schmalzing, C. Beisbart, T. Buchert, H. Wagner, Morphological fluctuations of large-scale structure: the PSCz survey. Astron. Astrophys. 373, 1 (2001)

    CrossRef  Google Scholar 

  44. M. Kiderlen, M. Hörig, Matérn’s hard core models of types I and II. CSGB (2013, preprint)

    Google Scholar 

  45. M.A. Klatt, Morphometry of random spatial structures in physics, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2016

    Google Scholar 

  46. M.A. Klatt, S. Torquato, Characterization of maximally random jammed sphere packings: Voronoi correlation functions. Phys. Rev. E 90, 052120 (2014)

    CrossRef  Google Scholar 

  47. A.M. Kraynik, Foam structure: from soap froth to solid foams. MRS Bull. 28(04), 275–278 (2003)

    CrossRef  Google Scholar 

  48. A.M. Kraynik, The structure of random foam. Adv. Eng. Mater. 8(9), 900 (2006)

    Google Scholar 

  49. A.M. Kraynik, D.A. Reinelt, F. van Swol, Structure of random monodisperse foam. Phys. Rev. E 67, 031403 (2003)

    CrossRef  Google Scholar 

  50. A.M. Kraynik, D.A. Reinelt, F. van Swol, Structure of Random Foam. Phys. Rev. Lett. 93, 208301 (2004)

    CrossRef  Google Scholar 

  51. G. Last, Stationary partitions and Palm probabilities. Adv. Appl. Prob. 38, 602–620 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  52. G. Last, M.D. Penrose, Lectures on the Poisson Process (Cambridge University Press, Cambridge, to appear). http://www.math.kit.edu/stoch/~last/seite/lehrbuch_poissonp/de

  53. G. Last, G. Peccati, M. Schulte, Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. Prob. Theory Related Fields. 165, 667–723 (2016)

    CrossRef  MATH  Google Scholar 

  54. C. Lautensack, Random Laguerre Tessellations, Ph.D. thesis, Universität Karlsruhe, 2007

    Google Scholar 

  55. F. Lavancier, J. Møller, E. Rubak, Determinantal point process models and statistical inference. J. R. Stat. Soc. B 77(4), 853–877 (2015)

    MathSciNet  CrossRef  Google Scholar 

  56. E.A. Lazar, J.K. Mason, R.D. MacPherson, D.J. Srolovitz, Statistical topology of three-dimensional Poisson-Voronoi cells and cell boundary networks. Phys. Rev. E 88, 063309 (2013)

    CrossRef  Google Scholar 

  57. B.D. Lubachevsky, F.H. Stillinger, Geometric properties of random disk packings. J. Stat. Phys. 60(5–6), 561 (1990)

    Google Scholar 

  58. O. Macchi, The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7(1), 83–122 (1975)

    MathSciNet  CrossRef  MATH  Google Scholar 

  59. V.N. Manoharan, Colloidal matter: packing, geometry, and entropy. Science 349(6251), 1253751 (2015)

    Google Scholar 

  60. H. Mantz, K. Jacobs, K. Mecke, Utilising Minkowski functionals for image analysis. J. Stat. Mech. 12, P12015 (2008)

    CrossRef  Google Scholar 

  61. S. Mase, J. Møller, D. Stoyan, R.P. Waagepetersen, G. Döge, Packing densities and simulated tempering for hard core Gibbs point processes. Ann. Inst. Statist. Math. 53, 661–680 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  62. P. McCullagh, J. Møller, The permanental process. Adv. Appl. Prob. 38, 873–888 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  63. P. McMullen, Isometry covariant valuations on convex bodies. Rend. Circ. Mat. Palermo (2) Suppl. 50, 259 (1997)

    Google Scholar 

  64. K. Mecke, Morphological characterization of patterns in reaction-diffusion systems. Phys. Rev. E 53(5), 4794 (1996)

    Google Scholar 

  65. K. Mecke, Integral geometry and statistical physics. Int. J. Mod. Phys. B 12, 861 (1998)

    MathSciNet  CrossRef  MATH  Google Scholar 

  66. K. Mecke, D. Stoyan, Statistical Physics and Spatial Statistics – The Art of Analyzing and Modeling Spatial Structures and Pattern Formation. Lecture Notes in Physics, vol. 554, 1st edn. (Springer, Berlin, 2000)

    Google Scholar 

  67. J. Mecke, W. Nagel, V. Weiss, Some distributions for I-segments of planar random homogeneous STIT tessellations. Math. Nachr. 284, 1483–1495 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  68. W. Mickel, G.E. Schröder-Turk, K. Mecke, Tensorial Minkowski functionals of triply periodic minimal surfaces. Interface Focus 2(5), 623–633 (2012)

    CrossRef  Google Scholar 

  69. W. Mickel, S.C. Kapfer, G.E. Schröder-Turk, K. Mecke, Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. J. Chem. Phys. 138(4), 044501 (2013)

    Google Scholar 

  70. R. Miles, Poisson flats in Euclidean spaces. Part ii: Homogeneous poisson flats and complementary theorem. Adv. Appl. Prob. 3, 1–43 (1971)

    MATH  Google Scholar 

  71. J. Møller, Lectures on Random Voronoi Tessellations. Lecture Notes in Statistics, vol. 87 (Springer, New York, 1994)

    Google Scholar 

  72. J. Møller, R. Plenge Waagepetersen, Statistical Inference and Simulation for Spatial Point Processes. C& H/CRC Monographs on Statistics & Applied Probability, vol. 100 (Chapman and Hall/CRC, Boca Raton, 2003)

    Google Scholar 

  73. J. Møller, D. Stoyan, Stochastic geometry and random tessellations. Tech. rep., Department of Mathematical Sciences, Aalborg University, 2007

    Google Scholar 

  74. J. Møller, S. Zuyev, Gamma-type results and other related properties of poisson processes. Adv. Appl. Prob. 28, 662–673 (1996)

    MathSciNet  CrossRef  MATH  Google Scholar 

  75. J. Møller, M.L. Huber, R.L. Wolpert, Perfect simulation and moment properties for the Matérn type III process. Stoch. Proc. Appl. 120(11), 2142–2158 (2010)

    CrossRef  MATH  Google Scholar 

  76. W. Nagel, V. Weiss, Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration. Adv. Appl. Probab. 37(4), 859 (2005)

    Google Scholar 

  77. W. Nagel, V. Weiss, Mean values for homogeneous STIT tessellations in 3D. Image Anal. Stereol. 27, 29–37 (2008)

    CrossRef  MATH  Google Scholar 

  78. X.X. Nguyen, H. Zessin, Integral and differential characterizations of the Gibbs process. Math. Nachr. 88, 105–115 (1979)

    MathSciNet  CrossRef  MATH  Google Scholar 

  79. A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley Series in Probability and Statistics (Wiley, Chichester, 2009)

    Google Scholar 

  80. E. Pineda, P. Bruna, D. Crespo, Cell size distribution in random tessellations of space. Phys. Rev. E 70, 066119 (2004)

    CrossRef  Google Scholar 

  81. C. Preston, Random Fields. Lecture Notes in Mathematics, vol. 534 (Springer, Berlin, 1976)

    Google Scholar 

  82. C. Redenbach, Microstructure models for cellular materials. Comput. Mater. Sci. 44(4), 1397–1407 (2009)

    CrossRef  Google Scholar 

  83. D. Ruelle, Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 18, 127–159 (1970)

    MathSciNet  CrossRef  MATH  Google Scholar 

  84. F.M. Schaller, S.C. Kapfer, M.E. Evans, M.J. Hoffmann, T. Aste, M. Saadatfar, K. Mecke, G.W. Delaney, G.E. Schröder-Turk, Set Voronoi diagrams of 3d assemblies of aspherical particles. Philos. Mag. 93, 3993–4017 (2013)

    CrossRef  Google Scholar 

  85. F.M. Schaller, M. Neudecker, M. Saadatfar, G. Delaney, K. Mecke, G.E. Schröder-Turk, M. Schröter, Tomographic analysis of jammed ellipsoid packings. AIP Conf. Proc. 1542, 377–380 (2013)

    CrossRef  Google Scholar 

  86. F.M. Schaller, S.C. Kapfer, J.E. Hilton, P.W. Cleary, K. Mecke, C. De Michele, T. Schilling, M. Saadatfar, M. Schröter, G.W. Delaney, G.E. Schröder-Turk, Non-universal Voronoi cell shapes in amorphous ellipsoid packs. Europhys. Lett. 111, 24002 (2015)

    CrossRef  Google Scholar 

  87. F.M. Schaller, M. Neudecker, M. Saadatfar, G.W. Delaney, G.E. Schröder-Turk, M. Schröter, Local origin of global contact numbers in frictional ellipsoid packings. Phys. Rev. Lett. 114, 158001 (2015)

    CrossRef  Google Scholar 

  88. F.M. Schaller, R.F.B. Weigel, S.C. Kapfer, Densest local structures of uniaxial ellipsoids. Phys. Rev. X 6, 041032 (2016)

    Google Scholar 

  89. J. Schmalzing, T. Buchert, A.L. Melott, V. Sahni, B.S. Sathyaprakash, S.F. Shandarin, Disentangling the cosmic web. I. Morphology of isodensity contours. Astrophys. J. 526(2), 568 (1999)

    Google Scholar 

  90. R. Schneider, W. Weil, Stochastic and Integral Geometry (Probability and Its Applications) (Springer, Berlin, 2008)

    CrossRef  MATH  Google Scholar 

  91. C. Scholz, G.E. Schröder-Turk, K. Mecke, Pattern-fluid interpretation of chemical turbulence. Phys. Rev. E 91, 042907 (2015)

    CrossRef  Google Scholar 

  92. C. Scholz, F. Wirner, M.A. Klatt, D. Hirneise, G.E. Schröder-Turk, K. Mecke, C. Bechinger, Direct relations between morphology and transport in boolean models. Phys. Rev. E 92, 043023 (2015)

    CrossRef  Google Scholar 

  93. T. Schreiber, C. Thäle, Intrinsic volumes of the maximal polytope process in higher dimensional STIT tessellations. Stoch. Process. Appl. 121, 989–1012 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  94. T. Schreiber, C. Thäle, Second-order theory for iteration stable tessellations. Probab. Math. Stat. 32, 281–300 (2012)

    MathSciNet  MATH  Google Scholar 

  95. G.E. Schröder-Turk, S. Kapfer, B. Breidenbach, C. Beisbart, K. Mecke, Tensorial Minkowski functionals and anisotropy measures for planar patterns. J. Microsc. 238(1), 57 (2010)

    Google Scholar 

  96. G.E. Schröder-Turk, W. Mickel, S.C. Kapfer, M.A. Klatt, F.M. Schaller, M.J.F. Hoffmann, N. Kleppmann, P. Armstrong, A. Inayat, D. Hug, M. Reichelsdorfer, W. Peukert, W. Schwieger, K. Mecke, Minkowski tensor shape analysis of cellular, granular and porous structures. Adv. Mater. 23(22–23), 2535 (2011)

    Google Scholar 

  97. G.E. Schröder-Turk, R. Schielein, S.C. Kapfer, F.M. Schaller, G.W. Delaney, T. Senden, M. Saadatfar, T. Aste, K. Mecke, Minkowski tensors and local structure metrics: amorphous and crystalline sphere packings. AIP Conf. Proc. 1542(1), 349 (2013)

    Google Scholar 

  98. G.E. Schröder-Turk, W. Mickel, S.C. Kapfer, F.M. Schaller, B. Breidenbach, D. Hug, K. Mecke, Minkowski tensors of anisotropic spatial structure. New J. Phys. 15(8), 083028 (2013)

    Google Scholar 

  99. B. Schuetrumpf, M.A. Klatt, K. Iida, J. Maruhn, K. Mecke, P.G. Reinhard, Time-dependent Hartree-Fock approach to nuclear “pasta” at finite temperature. Phys. Rev. C 87, 055805 (2013)

    CrossRef  Google Scholar 

  100. B. Schuetrumpf, M.A. Klatt, K. Iida, G.E. Schröder-Turk, J.A. Maruhn, K. Mecke, P.G. Reinhard, Appearance of the single gyroid network phase in “nuclear pasta” matter. Phys. Rev. C 91, 025801 (2015)

    CrossRef  Google Scholar 

  101. V. Senthil Kumar, V. Kumaran, Voronoi cell volume distribution and configurational entropy of hard-spheres. J. Chem. Phys. 123, 114501 (2005)

    CrossRef  Google Scholar 

  102. T. Shirai, Y. Takahashi, Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes. J. Funct. Anal. 205(2), 414–463 (2003)

    Google Scholar 

  103. P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784 (1983)

    CrossRef  Google Scholar 

  104. J. Stienen, Die Vergröberung von Karbiden in reinen Eisen-Kohlenstoff-Staehlen, Ph.D. thesis, RWTH Aachen, 1982

    Google Scholar 

  105. D. Stoyan, M. Schlather, Random sequential adsorption: relationship to dead leaves and characterization of variability. J. Stat. Phys. 100, 969–979 (2000)

    CrossRef  MATH  Google Scholar 

  106. J. Talbot, G. Tarjus, P.R. Van Tassel, P. Viot, From car parking to protein adsorption: an overview of sequential adsorption processes. Colloids Surf. A 165(1), 287–324 (2000)

    CrossRef  Google Scholar 

  107. J. Teichmann, F. Ballani, K.G. van den Boogaart, Generalizations of Matern’s hard-core point processes. Spat. Stat. 9, 33–53 (2013)

    CrossRef  Google Scholar 

  108. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Interdisciplinary Applied Mathematics. Springer, New York (2002)

    CrossRef  MATH  Google Scholar 

  109. S. Torquato, F.H. Stillinger, Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces. Phys. Rev. E 73, 031106 (2006)

    MathSciNet  CrossRef  Google Scholar 

  110. R. Wittmann, M. Marechal, K. Mecke, Fundamental measure theory for smectic phases: scaling behavior and higher order terms. J. Chem. Phys. 141(6), 064103 (2014)

    Google Scholar 

  111. W.W. Wood, J.D. Jacobson, Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres. J. Chem. Phys. 27, 1207–1208 (1957)

    CrossRef  Google Scholar 

  112. G. Zhang, S. Torquato, Precise algorithm to generate random sequential addition of hard hyperspheres at saturation. Phys. Rev. E 88, 053312 (2013)

    CrossRef  Google Scholar 

  113. C. Zong, Sphere Packings. Universitext (Springer, New York, 1999)

    MATH  Google Scholar 

  114. S. Zuyev, Stopping sets: gamma-type results and hitting properties. Adv. Appl. Prob. 31, 355–366 (1999)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Acknowledgements

We thank Andy Kraynik, Markus Spanner, and Richard Schielein for their data of the monodisperse foam, the equilibrium hard-sphere liquids, and the crystalline sphere packings, respectively. We also thank Felix Ballani for his software simulating the typical cell of a Poisson hyperplane tessellation. We thank Markus Kiderlen for valuable discussions and suggestions. We also thank the German science foundation (DFG) for the grants SCHR1148/3, HU1874/3-2, LA965/6-2, and ME1361/11 awarded as part of the DFG-Forschergruppe “Geometry and Physics of Spatial Random Systems”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael A. Klatt or Gerd E. Schröder-Turk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Klatt, M.A., Last, G., Mecke, K., Redenbach, C., Schaller, F.M., Schröder-Turk, G.E. (2017). Cell Shape Analysis of Random Tessellations Based on Minkowski Tensors. In: Jensen, E., Kiderlen, M. (eds) Tensor Valuations and Their Applications in Stochastic Geometry and Imaging. Lecture Notes in Mathematics, vol 2177. Springer, Cham. https://doi.org/10.1007/978-3-319-51951-7_13

Download citation