Skip to main content

Lasers in Orthodontics

  • Chapter
  • First Online:
Lasers in Dentistry—Current Concepts

Abstract

Lasers are relatively new additions to orthodontic therapy. This paper reviews the available laser wavelengths and will discuss some adjunct application of diode lasers for soft tissue procedures. These include photobiomodulation, laser gingivectomy to improve oral hygiene or bracket positioning, aesthetic laser gingival recontouring and laser exposure of the superficially impacted teeth. Selected treated cases will be presented throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Applications of Lasers in Orthodontics for Soft Tissue Procedures and Photobiomodulation

  1. Zucchelli G, Mounssif I. Periodontal plastic surgery. Periodontol 2000. 2015;68(1):333–68.

    Google Scholar 

  2. Aoki A, Mizutani K, Schwarz F, et al. Periodontal and peri-implant wound healing following laser therapy. Periodontol 2000. 2015;68:217–69.

    Google Scholar 

  3. Pang P, Andreana S, Aoki A, Coluzzi D, Obeidi A, Olivi G, Parker S, Rechmann P, Sulewski J, Sweeney C, Swick M, Yung F. Laser energy in oral soft tissue applications. J Laser Dent. 2010;18:123–31.

    Google Scholar 

  4. Aoki A, Sasaki K, Watanabe H, Ishikawa I. Lasers in non-surgical periodontal therapy. Periodontol 2000. 2004;36:59–97.

    Google Scholar 

  5. Takei HH, Carranza FA. Gingival surgical techniques. In: Newman MG, Takei HH, Klokkevold PR, Carranza FA, editors. Carranza’s clinical periodontology. 10th ed. St. Louis: Elsevier; 2006. p. 915.

    Google Scholar 

  6. Sawabe M, Aoki A, Komaki M, Iwasaki K, Ogita M, Izumi Y. Gingival tissue healing following Er:YAG laser ablation compared to electrosurgery in rats. Lasers Med Sci. 2015;30:875–83.

    Article  PubMed  Google Scholar 

  7. Sarver DM, Yanosky M. Principles of cosmetic dentistry in orthodontics: part 2. Soft tissue laser technology and cosmetic gingival contouring. Am J Orthod Dentofacial Orthop. 2005;127:85–90.

    Article  PubMed  Google Scholar 

  8. Aoki A, Takasaki A, Pourzarandian A, Mizutani K, Ruwanpura S, Iwasaki K, Noguchi K, Oda S, Watanabe H, Ishikawa I, Izumi Y. Photo-bio-modulation laser strategies in periodontal therapy. Proceedings of light-activated tissue regeneration and therapy II, New York Springer 2008:181–90.

    Google Scholar 

  9. Izumi Y, Aoki A, Yamada Y, Kobayashi H, Iwata T, Akizuki T, Suda T, Nakamura S, Wara-Aswapati N, Ueda M, Ishikawa I. Current and future periodontal tissue engineering. Periodontol 2000. 2011;56:166–87.

    Article  PubMed  Google Scholar 

  10. Avci P, Gupta A, Sadasivam M, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg. 2013;32:41–52.

    PubMed  PubMed Central  Google Scholar 

  11. Khan I, Arany P. Biophysical approaches for oral wound healing: emphasis on photobiomodulation. Adv Wound Care (New Rochelle). 2015;4:724–37.

    Article  Google Scholar 

  12. Tunér J, Beck-Kristensen PH, Ross G, Ross A. Photobiomodulation in dentistry. In: Convissar RA, editor. Principles and practice of laser dentistry. 2nd ed. St. Louis: Elsevier; 2016. p. 251–74.

    Chapter  Google Scholar 

  13. AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci. 2012;27:237–49.

    Google Scholar 

  14. Mester E, Spiry T, Szende B, Tota JG. Effect of laser rays on wound healing. Am J Surg. 1971;122:532–5.

    Article  PubMed  Google Scholar 

  15. Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD. The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg. 2004;22:323–9.

    Article  PubMed  Google Scholar 

  16. Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka CS. The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg. 2004;22:241–7.

    Article  PubMed  Google Scholar 

  17. Albertini R, Villaverde AB, Aimbire F, Salgado MA, Bjordal JM, Alves LP, Munin E, Costa MS. Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema. J Photochem Photobiol B. 2007;89:50–5.

    Google Scholar 

  18. Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA. Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg. 2006;24:158–68.

    Article  PubMed  Google Scholar 

  19. Isman E, Aras MH, Cengiz B, Bayraktar R, Yolcu U, Topcuoglu T, Usumez A, Demir T. Effects of laser irradiation at different wavelengths (660, 810, 980, and 1064 nm) on transient receptor potential melastatin channels in an animal model of wound healing. Lasers Med Sci. 2015;30:1489–95.

    Google Scholar 

  20. Ogita M, Tsuchida S, Aoki A, Satoh M, Kado S, Sawabe M, Nanbara H, Kobayashi H, Takeuchi Y, Mizutani K, Sasaki Y, Nomura F, Izumi Y. Increased cell proliferation and differential protein expression induced by low-level Er:YAG laser irradiation in human gingival fibroblasts: proteomic analysis. Lasers Med Sci. 2015;30:1855–66.

    Article  PubMed  Google Scholar 

  21. Dias SB, Fonseca MV, Dos Santos NC, Mathias IF, Martinho FC, Junior MS, Jardini MA, Santamaria MP. Effect of GaAIAs low-level laser therapy on the healing of human palate mucosa after connective tissue graft harvesting: randomized clinical trial. Lasers Med Sci. 2015;30:1695–702.

    Article  PubMed  Google Scholar 

  22. de Melo Rambo CS, Silva JA Jr, Serra AJ, Ligeiro AP, de Paula VR, Albertini R, Leal-Junior EC, de Tarso Camillo de Carvalho P. Comparative analysis of low-level laser therapy (660 nm) on inflammatory biomarker expression during the skin wound-repair process in young and aged rats. Lasers Med Sci. 2014;29:1723–33.

    Google Scholar 

  23. Liao X, Xie GH, Liu HW, Cheng B, Li SH, Xie S, Xiao LL, Fu XB. Helium-neon laser irradiation promotes the proliferation and migration of human epidermal stem cells in vitro: proposed mechanism for enhanced wound re-epithelialization. Photomed Laser Surg. 2014;32:219–25.

    Google Scholar 

  24. Fujimura T, Mitani A, Fukuda M, Mogi M, Osawa K, Takahashi S, Aino M, Iwamura Y, Miyajima S, Yamamoto H, Noguchi T. Irradiation with a low-level diode laser induces the developmental endothelial locus-1 gene and reduces proinflammatory cytokines in epithelial cells. Lasers Med Sci. 2014;29:987–94.

    Article  PubMed  Google Scholar 

  25. Batista JD, Sargenti-Neto S, Dechichi P, Rocha FS, Pagnoncelli RM. Low-level laser therapy on bone repair: is there any effect outside the irradiated field? Lasers Med Sci. 2015;30:1569–74.

    Article  PubMed  Google Scholar 

  26. Pinheiro AL, Aciole GT, Ramos TA, Gonzalez TA, da Silva LN, Soares LG, Aciole JM, dos Santos JN. The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a histological and histomorphometric study on rabbits. Lasers Med Sci. 2014;29:279–88.

    Google Scholar 

  27. de Vasconcellos LM, Barbara MA, Deco CP, Junqueira JC, do Prado RF, Anbinder AL, de Vasconcellos LG, Cairo CA, Carvalho YR. Healing of normal and osteopenic bone with titanium implant and low-level laser therapy (GaAlAs): a histomorphometric study in rats. Lasers Med Sci. 2014;29:575–80.

    Article  PubMed  Google Scholar 

  28. Tim CR, Pinto KN, Rossi BR, Fernandes K, Matsumoto MA, Parizotto NA, Rennó AC. Low-level laser therapy enhances the expression of osteogenic factors during bone repair in rats. Lasers Med Sci. 2014;29:147–56.

    Article  PubMed  Google Scholar 

  29. Pagin MT, de Oliveira FA, Oliveira RC, Sant’Ana AC, de Rezende ML, Greghi SL, Damante CA. Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci. 2014;29:55–9.

    Article  PubMed  Google Scholar 

  30. Peccin MS, de Oliveira F, Muniz Renno AC, Pacheco de Jesus GP, Pozzi R, Gomes de Moura CF, Giusti PR, Ribeiro DA. Helium-neon laser improves bone repair in rabbits: comparison at two anatomic sites. Lasers Med Sci. 2013;28:1125–30.

    Article  PubMed  Google Scholar 

  31. Boldrini C, de Almeida JM, Fernandes LA, Ribeiro FS, Garcia VG, Theodoro LH, Pontes AE. Biomechanical effect of one session of low-level laser on the bone-titanium implant interface. Lasers Med Sci. 2013;28:349–52.

    Article  PubMed  Google Scholar 

  32. Pinheiro AL, Soares LG, Barbosa AF, Ramalho LM, dos Santos JN. Does LED phototherapy influence the repair of bone defects grafted with MTA, bone morphogenetic proteins, and guided bone regeneration? A description of the repair process on rodents. Lasers Med Sci. 2012;27:1013–24.

    Google Scholar 

  33. Rosa AP, de Sousa LG, Regalo SC, Issa JP, Barbosa AP, Pitol DL, de Oliveira RH, de Vasconcelos PB, Dias FJ, Chimello DT, Siéssere S. Effects of the combination of low-level laser irradiation and recombinant human bone morphogenetic protein-2 in bone repair. Lasers Med Sci. 2012;27:971–7.

    Google Scholar 

  34. Anders JJ, Moges H, Wu X, Erbele ID, Alberico SL, Saidu EK, Smith JT, Pryor BA. In vitro and in vivo optimization of infrared laser treatment for injured peripheral nerves. Lasers Surg Med. 2014;46:34–45.

    Google Scholar 

  35. Takhtfooladi MA, Jahanbakhsh F, Takhtfooladi HA, Yousefi K, Allahverdi A. Effect of low-level laser therapy (685 nm, 3 J/cm(2)) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci. 2015;30:1047–52.

    Google Scholar 

  36. Masoumipoor M, Jameie SB, Janzadeh A, Nasirinezhad F, Soleimani M, Kerdary M. Effects of 660- and 980-nm low-level laser therapy on neuropathic pain relief following chronic constriction injury in rat sciatic nerve. Lasers Med Sci. 2014;29:1593–8.

    Article  PubMed  Google Scholar 

  37. Gasperini G, de Siqueira IC, Costa LR. Lower-level laser therapy improves neurosensory disorders resulting from bilateral mandibular sagittal split osteotomy: a randomized crossover clinical trial. J Craniomaxillofac Surg. 2014;42:e130–3.

    Article  PubMed  Google Scholar 

  38. Akgul T, Gulsoy M, Gulcur HO. Effects of early and delayed laser application on nerve regeneration. Lasers Med Sci. 2014;29:351–7.

    Article  PubMed  Google Scholar 

  39. Lazovic M, Ilic-Stojanovic O, Kocic M, Zivkovic V, Hrkovic M, Radosavljevic N. Placebo-controlled investigation of low-level laser therapy to treat carpal tunnel syndrome. Photomed Laser Surg. 2014;32:336–44.

    Article  PubMed  Google Scholar 

  40. de Sousa AP, Silveira NT, de Souza J, Cangussú MC, dos Santos JN, Pinheiro AL. Laser and LED phototherapies on angiogenesis. Lasers Med Sci. 2013;28:981–7.

    Google Scholar 

  41. Góralczyk K, Szymańska J, Łukowicz M, Drela E, Kotzbach R, Dubiel M, Michalska M, Góralczyk B, Zając A, Rość D. Effect of LLLT on endothelial cells culture. Lasers Med Sci. 2015;30:273–8.

    Article  PubMed  Google Scholar 

  42. Esmaeelinejad M, Bayat M, Darbandi H, Bayat M, Mosaffa N. The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums. Lasers Med Sci. 2014;29:121–9.

    Google Scholar 

  43. Pellicioli AC, Martins MD, Dillenburg CS, Marques MM, Squarize CH, Castilho RM. Laser phototherapy accelerates oral keratinocyte migration through the modulation of the mammalian target of rapamycin signaling pathway. J Biomed Opt. 2014;19:028002.

    Article  PubMed  Google Scholar 

  44. Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA. Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci. 2013;28:367–74.

    Google Scholar 

  45. Fujihara NA, Hiraki KR, Marques MM. Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med. 2006;38:332–6.

    Google Scholar 

  46. Gonçalves RV, Novaes RD, Matta SLP, Benevides GP, Faria FR, Pinto MVM. Comparative study of the effects of gallium-aluminum-arsenide laser photobiomodulation and healing oil on skin wounds in Wistar rats: a histomorphometric study. Photomed Laser Surg. 2010;28:597–602.

    Article  PubMed  Google Scholar 

  47. Xavier M, David DR, Souza RA, et al. Anti-inflammatory effects of low-level light emitting diode therapy on achilles tendinitis in rats. Lasers Surg Med. 2010;42:553–8.

    Article  PubMed  Google Scholar 

  48. Novaes RD, Gonçalves RV, Cupertino MC, et al. The energy density of laser light differentially modulates the skin morphological reorganization in a murine model of healing by secondary intention. Int J Exp Pathol. 2014;95:138–46.

    Article  PubMed  Google Scholar 

  49. Posten W, Wrone DA, Dover JS, Silapunt S, Alam M. Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg. 2005;31:334–40.

    Article  PubMed  Google Scholar 

  50. Houreld NN, Sekhejane PR, Abrahamse H. Irradiation at 830 nm stimulates nitric oxide production and inhibits pro-inflammatory cytokines in diabetic wounded fibroblast cells. Lasers Surg Med. 2010;42:494–502.

    Google Scholar 

  51. Pogrel MA, Chen JW, Zhang K. Effects of low-energy gallium-aluminum-arsenide laser irradiation on cultured fibroblasts and keratinocytes. Lasers Surg Med. 1997;20:426–32.

    Article  PubMed  Google Scholar 

  52. Martignago CC, Oliveira RF, Pires-Oliveira DA, Oliveira PD, Pacheco Soares C, Monzani PS, Poli-Frederico RC. Effect of low-level laser therapy on the gene expression of collagen and vascular endothelial growth factor in a culture of fibroblast cells in mice. Lasers Med Sci. 2015;30:203–8.

    Article  PubMed  Google Scholar 

  53. Gonçalves RV, Mezêncio JMS, Benevides GP, et al. Effect of gallium-arsenide laser, gallium-aluminum-arsenide laser and healing ointment on cutaneous wound healing in Wistar rats. Braz J Med Biol Res. 2010;43:350–5.

    Article  PubMed  Google Scholar 

  54. Kang Y, Rabie AB, Wong RW. A review of laser applications in orthodontics. Int J Orthod Milwaukee. 2014;25:47–56.

    PubMed  Google Scholar 

  55. Chmura LG, Convissar RA. Lasers in orthodontics. In: Convissar RA, editor. Principles and practice of laser dentistry. 2nd ed. St. Louis: Elsevier; 2016. p. 203–19.

    Chapter  Google Scholar 

  56. Mizutani K, Aoki A, Coluzzi D, Yukna R, Wang CY, Pavlic V, Izumi Y. Lasers in minimally invasive periodontal and peri-implant therapy. Periodontol 2000. 2016;71:185–212.

    Article  PubMed  Google Scholar 

  57. Migliorati EKJ, de Almeida Rosa DS. Regenerative laser periodontal therapy. In: Convissar RA, editor. Principles and practice of laser dentistry. 2nd ed. St. Louis: Elsevier; 2016. p. 67–88.

    Chapter  Google Scholar 

  58. Ishikawa I, Aoki A, Takasaki AA, Mizutani K, Sasaki KM, Izumi Y. Application of lasers in periodontics: true innovation or myth? Periodontol 2000. 2009;50:90–126.

    Article  PubMed  Google Scholar 

  59. Pang P, Andreana S, Aoki A, Coluzzi D, Obeidi A, Olivi G, Parker S, Rechmann P, Sulewski J, Sweeney C, Swick M, Yung F. Laser energy in oral soft tissue applications. J Laser Dent. 2011;18:123–31.

    Google Scholar 

  60. Merigo E, Clini F, Fornaini C, Oppici A, Paties C, Zangrandi A, Fontana M, Rocca JP, Meleti M, Manfredi M, Cella L, Vescovi P. Laser-assisted surgery with different wavelengths: a preliminary ex vivo study on thermal increase and histological evaluation. Lasers Med Sci. 2013;28:497–504.

    Google Scholar 

  61. Goharkhay K, Moritz A, Wilder-Smith P, Schoop U, Kluger W, Jakolitsch S, Sperr W. Effects on oral soft tissue produced by a diode laser in vitro. Lasers Surg Med. 1999;25:401–6.

    Google Scholar 

  62. Jin JY, Lee SH, Yoon HJ. A comparative study of wound healing following incision with a scalpel, diode laser or Er,Cr:YSGG laser in guinea pig oral mucosa: a histological and immunohistochemical analysis. Acta Odontol Scand. 2010;68:232–8.

    Article  PubMed  Google Scholar 

  63. Hall RN, Fenner GE, Kingsley JD, Soltys TJ, Carlson RO. Coherent light emission from GaAs junctions. Physical Review Letters. 1962;9(9):366–368.

    Google Scholar 

  64. Nathan MI, Dumke WP, Burns G, Dill FH, Lasher G. Stimulated emission of radiation from GaAs pn junctions. Applied Physics Letters. 1962;1(3):62–64.

    Google Scholar 

  65. Nasim H, Jamil Y. Diode lasers: From laboratory to industry. Optics & Laser Technology. 2014;56:211–222.

    Google Scholar 

  66. Fornaini C, Merigo E, Rocca JP, Lagori G, Raybaud H, Selleri S, Cucinotta A.450 nm Blue Laser and Oral Surgery: Preliminary ex vivo Study. J Contemp Dent Pract. 2016;17(10):795–800.

    Google Scholar 

  67. Braun A, Berthold M, Frankenberger R. The 445-nm semiconductor laser in dentistry – introduction of a new wavelength. Quintessenz 2015;66(2):205–211.

    Google Scholar 

  68. Arroyo HH, Neri L, Fussuma CY, Imamura R. Diode laser for laryngeal surgery: a systematic review. Int Arch Otorhinolaryngol. 2016;20:172–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Borzabadi-Farahani A. The adjunctive soft-tissue diode laser in orthodontics. Compend Contin Educ Dent. 2017;38(eBook 5):e18–e31.

    Google Scholar 

  70. Kravitz ND. The application of lasers in orthodontics. In: Krishnan V, Davidovitch Z, editors. Integrated clinical orthodontics. 1st ed. West Sussex: Wiley; 2012. p. 422–43.

    Google Scholar 

  71. Colluzzi DJ. Fundamentals of dental lasers: Science and instruments. Dent Clin N Am. 2004;48:751–70.

    Article  Google Scholar 

  72. Borchers R. Comparison of diode lasers in soft-tissue surgery using CW-and superpulsed mode: an in vivo study. Int J Laser Dent. 2001;1:17–27.

    Google Scholar 

  73. Al-Khatib AA, Al-Azzawi AS. Comparative study of diode laser 940 nm in performing frenectomy in both: Continuous and pulsed modes: An in vivo study. J Dent Lasers. 2015;9:50–68.

    Google Scholar 

  74. Prabhu M, Ramesh A, Thomas B. Treatment of orthodontically induced gingival hyperplasia by diode laser – case report. Nitte Univ J Health Sci. 2015;5:66–8.

    Google Scholar 

  75. Kravitz ND, Graham JW, Nicozisis JL, Gill J. Compunded topical anesthetics in orthodontics. J Clin Orthod. 2015;49:371–7.

    PubMed  Google Scholar 

  76. To TN, Rabie AB, Wong RW, McGrath CP. The adjunct effectiveness of diode laser gingivectomy in maintaining periodontal health during orthodontic treatment. Angle Orthod. 2013;83:43–7.

    Article  PubMed  Google Scholar 

  77. Hempton TJ, Dominici JT. Contemporary crown-lengthening therapy: a review. J Am Dent Assoc. 2010;141:647–55.

    Article  PubMed  Google Scholar 

  78. van Gastel J, Quirynen M, Teughels W, Coucke W, Carels C. Longitudinal changes in microbiology and clinical periodontal variables after placement of fixed orthodontic appliances. J Periodontol. 2008;79(11):2078–86.

    Google Scholar 

  79. Yáñez-Vico RM, Iglesias-Linares A, Ballesta-Mudarra S, Ortiz-Ariza E, Solano-Reina E, Perea EJ. Short-term effect of removal of fixed orthodontic appliances on gingival health and subgingival microbiota: a prospective cohort study. Acta Odontol Scand. 2015;73(7):496–502.

    Google Scholar 

  80. Kloehn JS, Pfeifer JS. The effect of orthodontic treatment on the periodontium. Angle Orthod. 1974;44:127–34.

    PubMed  Google Scholar 

  81. Palomo L, Palomo JM, Bissada NF. Salient periodontal issues for the modern biologic orthodontist. Semin Orthod. 2008;14:229–45.

    Article  Google Scholar 

  82. Camargo PM, Melnick PR, Pirih FQ, Lagos R, Takei HH. Treatment of drug-induced gingival enlargement: aesthetic and functional considerations. Periodontol 2000. 2001;27:131–8.

    Article  PubMed  Google Scholar 

  83. De Oliveira Guaré R, Costa SC, Baeder F, De Souza Merli LA, Dos Santos MT. Drug-induced gingival enlargement: biofilm control and surgical therapy with gallium–aluminum–arsenide (GaAlAs) diode laser-A 2-year follow-up. Spec Care Dentist. 2010;30:46–52.

    Article  PubMed  Google Scholar 

  84. Sarver DM, Yanosky M. Principles of cosmetic dentistry in orthodontics: part 3. Laser treatments for tooth eruption and soft tissue problems. Am J Orthod Dentofacial Orthop. 2005;127:262–4.

    Article  PubMed  Google Scholar 

  85. Lee EA. Laser-assisted gingival tissue procedures in esthetic dentistry. Pract Proced Aesthet Dent. 2006;18(suppl):2–6.

    Google Scholar 

  86. Ericson S, Kurol J. Radiographic assessment of maxillary canine eruption in children with clinical signs of eruption disturbance. Eur J Orthod. 1986;8:133–40.

    Article  PubMed  Google Scholar 

  87. Pini-Prato G, Mancini EA, Papini O, Crescini A. Mucogingival approaches in young orthodontic patients: combined strategies for success. Semin Orthod. 2014;20:150–69.

    Article  Google Scholar 

  88. Wriedt S, Jaklin J, Al-Nawas B, Wehrbein H. Impacted upper canines: examination and treatment proposal based on 3D versus 2D diagnosis. J Orofac Orthop. 2011;73:28–40.

    Article  Google Scholar 

  89. Hitchen AD. The impacted maxillary canine. Br Dent J. 1956;100:1–14.

    Google Scholar 

  90. Counihan K, Al-Awadhi EA, Butler J. Guidelines for the assessment of the impacted maxillary canine. Dent Update. 2013;40(770–2):775–7.

    Google Scholar 

  91. Firestone AR, Scheurer PA, Bürgin WB. Patients’ anticipation of pain and pain-related side effects, and their perception of pain as a result of orthodontic treatment with fixed appliances. Eur J Orthod. 1999;21:387–96.

    Article  PubMed  Google Scholar 

  92. Parkin N, Benson PE, Thind B, Shah A. Open versus closed surgical exposure of canine teeth that are displaced in the roof of the mouth. Cochrane Database Syst Rev. 2008;4:CD006966.

    Google Scholar 

  93. Scheurer PA, Firestone AR, Burgin WB. Perception of pain as a result of orthodontic treatment with fixed appliances. Eur J Orthod. 1996;18:349–57.

    Article  PubMed  Google Scholar 

  94. Bondemark L, Fredriksson K, Ilros S. Separation effect and perception of pain and discomfort from two types of orthodontic separators. World J Orthod. 2004;5:172–6.

    PubMed  Google Scholar 

  95. Sandhu SS, Sandhu J. Effect of physical activity level on orthodontic pain perception and analgesic consumption in adolescents. Am J Orthod Dentofacial Orthop. 2015;148:618–27.

    Article  PubMed  Google Scholar 

  96. Sandhu SS, Sandhu J. A randomized clinical trial investigating pain associated with superelastic nickel-titanium and multistranded stainless steel archwires during the initial leveling and aligning phase of orthodontic treatment. J Orthod. 2013;40:276–85.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sandhu SS, Cheema MS, Khehra HS. Comparative effectiveness of pharmacologic and nonpharmacologic interventions for orthodontic pain relief at peak pain intensity: a Bayesian network meta-analysis. Am J Orthod Dentofacial Orthop. 2016;150:13–32.

    Article  PubMed  Google Scholar 

  98. Shi Q, Yang S, Jia F, Xu J. Does low level laser therapy relieve the pain caused by the placement of the orthodontic separators?–A meta-analysis. Head Face Med. 2015;11:28.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Li FJ, Zhang JY, Zeng XT, Guo Y. Low-level laser therapy for orthodontic pain: a systematic review. Lasers Med Sci. 2015;30:1789–803.

    Article  PubMed  Google Scholar 

  100. Ren C, McGrath C, Yang Y. The effectiveness of low-level diode laser therapy on orthodontic pain management: a systematic review and meta-analysis. Lasers Med Sci. 2015;30:1881–93.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond. Front Immunol. 2014;5:511.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res. 2008;11:143–55.

    Article  PubMed  Google Scholar 

  103. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med. 2004;35:117–20.

    Article  PubMed  Google Scholar 

  104. Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res. 2006;9:38–43.

    Article  PubMed  Google Scholar 

  105. Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci. 2008;23:27–33.

    Article  PubMed  Google Scholar 

  106. Sousa MV, Scanavini MA, Sannomiya EK, Velasco LG, Angelieri F. Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg. 2011;29:191–6.

    Article  PubMed  Google Scholar 

  107. Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am J Orthod Dentofacial Orthop. 2012;141:289–97.

    Article  PubMed  Google Scholar 

  108. Gkantidis N, Mistakidis I, Kouskoura T, Pandis N. Effectiveness of non-conventional methods for accelerated orthodontic tooth movement: a systematic review and meta-analysis. J Dent. 2014;42:1300–19.

    Article  PubMed  Google Scholar 

  109. Kalemaj Z, DebernardI CL, Buti J. Efficacy of surgical and non-surgical interventions on accelerating orthodontic tooth movement: a systematic review. Eur J Oral Implantol. 2015;8:9–24.

    PubMed  Google Scholar 

Photobiomodulation Concepts within Orthodontics

  1. Sonesson M, et al. Efficacy of low-level laser therapy in accelerating tooth movement, preventing relapse and managing acute pain during orthodontic treatment in humans: a systematic review. BMC Oral Health. 2017;17:11. doi:10.1186/s12903-016-0242-8.

    Article  Google Scholar 

  2. Torri S, Weber JBB. Influence of low level laser therapy on the rate of orthodontic tooth movement: a literature review. Photomed Laser Surg. 2013;31(9):411–21.

    Article  PubMed  Google Scholar 

  3. Shaughnessy T, et al. Intraoral photobiomodulation-induced orthodontic tooth alignment: a preliminary study. BMC Oral Health. 2016;16:3. doi:10.1186/s12903-015-0159-7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huang YY. The handbook of photomedicine. Boca Raton: CRC Press; 2014. ISBN 978-1-4398-8469-0

    Google Scholar 

  5. Hode L, Tuner J. Laser phototherapy: clinical and scientific background. Grängesberg: Prima Books; 2014. ISBN 978-91-976478-5-4

    Google Scholar 

  6. Andrade I, Sousa AB, da Silva GC. New therapeutic modalities to modulate orthodontic tooth movement. J Orthod. 2014;19(6):123–33.

    Google Scholar 

  7. Ge MK, He WL, Chen J, et al. Efficacy of low level laser therapy for accelerating tooth movement during orthodontic treatment: a systematic review. Lasers Med Sci. 2015;30(5):1609–18.

    Article  PubMed  Google Scholar 

  8. Kalemaj Z, Debarnardi C, Buti J. Efficacy of surgical and non-surgical interventions on accelerating orthodontic tooth movement. Eur J Oral Implantol. 2015;8(1):9–24.

    PubMed  Google Scholar 

  9. Kim SJ, et al. Effect of low level laser therapy on the rate of tooth movement. Semin Orthod. 2015;21(3):210–8.

    Article  Google Scholar 

  10. Long H, Zhou Y, Xue J, et al. The effectiveness of low-level laser therapy in accelerating orthodontic tooth movement: a meta-analysis. Lasers Med Sci. 2015;30:1161–70.

    Article  PubMed  Google Scholar 

  11. Li FJ, Zhang Y, Zeng XT, et al. Low level laser therapy for orthodontic pain: a systematic review. Lasers Med Sci. 2015;30(6):1789–803.

    Article  PubMed  Google Scholar 

  12. Ren C, McGrath C, Yang Y. The effectiveness of low level diode laser therapy on orthodontic pain management: a systematic review and meta-analysis. Lasers Med Sci. 2015;30:1881–93.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Long H, Pyakurel U, Wang Y, et al. Interventions for accelerating orthodontic tooth movement: a systematic review. Angle Orthod. 2013;83(1):164–71.

    Article  PubMed  Google Scholar 

  14. Fink DF, Smith RJ. The duration of orthodontic treatment. Am J Orthod Dentofacial Orthop. 1992;102:42–51.

    Article  Google Scholar 

  15. Geiger AM, Gorelick L, Gwinnett AJ, et al. Reducing white spot lesions in orthodontic populations with fluoride rinsing. Am J Orthod Dentofacial Orthop. 1992;101:403–7.

    Article  PubMed  Google Scholar 

  16. Royko A, Denes Z, Razouk G. The relationship between the length of orthodontic treatment and patient compliance. Fogorz Sz. 1999;92:79–86.

    Google Scholar 

  17. Pandis N, Nasika M, Polychronopoulou A, et al. External root resorption in patients treated with conventional and self-ligating brackets. Am J Orthod Dentofacial Orthop. 2008;134:646–51.

    Article  PubMed  Google Scholar 

  18. Mizrahi E. Risk management in clinical practice Part 7. Dentolegal aspects of orthodontic practice. Br Dent J. 2010;209:381–90.

    Article  PubMed  Google Scholar 

  19. Polat O. Pain and discomfort after orthodontic appointments. Semin Orthod. 2007;13(4):292–300.

    Article  Google Scholar 

  20. Ngan P, Kess B, Wilson S. Perception of discomfort by patients undergoing orthodontic treatment. Am J Orthod Dentofacial Orthop. 1989;96(1):47–53.

    Article  PubMed  Google Scholar 

  21. Zhang M, McGrath C, Hagg U. Changes in oral health related quality of life during orthodontic appliance therapy. Am J Orthod Dentofacial Orthop. 2008;133(1):25–9.

    Article  PubMed  Google Scholar 

  22. Yamaguchi M, Garlet G. The role of inflammation in defining the type and pattern of tissue response in orthodontic tooth movement. In: Krishna V, Davidovich Z, editors. Biological mechanisms of tooth movement. Chichester/Ames: Wiley; 2015. Ch. 9. ISBN: 978-1-118-68887-8.

    Google Scholar 

  23. Roth PM, Thrash WJ. Effect of transcutaneous electrical nerve stimulation for controlling pain associated with orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 1986;90(2):132–8.

    Article  PubMed  Google Scholar 

  24. Marie SS, Powers M, Sheridan J. Vibratory stimulation as a method of reducing pain after orthodontic appliance adjustment. J Clin Orthod. 2003;37(4):205–8.

    PubMed  Google Scholar 

  25. Mohri Y, Fumoto M, Sato-Suzuki I, et al. Prolonged rhythmic gum chewing suppresses nociceptive response via serotegenic decending inhibitory pathway in humans. Pain. 2005;118(1):35–42.

    Article  PubMed  Google Scholar 

  26. Polat O, Karaman AI, Durmus E. Effects of pre-operative ibuprofen and naproxen sodium on orthodontic pain. Angle Orthod. 2005;75(5):791–6.

    PubMed  Google Scholar 

  27. Bird SE, Williams K, Kula K. Pre-operative acetaminophen vs ibuprofen for control of pain after orthodontic separator placement. Am J Orthod Dentofacial Orthop. 2007;132(4):504–10.

    Article  PubMed  Google Scholar 

  28. Walker JB, Buring SM. NSAID impairment of orthodontic tooth movement. Ann Pharmacother. 2001;35(1):113–5.

    Article  PubMed  Google Scholar 

  29. Bjordal JM, Johnson MI, Iversen V, et al. Low level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomised placebo controlled trials. Photomed Laser Surg. 2006;24(2):158–68.

    Google Scholar 

  30. Bjordal JM, Couppe C, Chow RT, et al. A systematic review of low level laser therapy with location specific doses for pain from chronic joint disorders. Aus J Physiother. 2003;49:107–16.

    Article  Google Scholar 

  31. Gigo-Benato D, Geuna S, Rochkind S. Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve. 2005;31:694–701.

    Article  PubMed  Google Scholar 

  32. Bensadoun RJ, Nair RG. Low level laser therapy in the prevention and treatment of cancer therapy induced mucositis. Curr Opin Oncol. 2012;24:363–70.

    Article  PubMed  Google Scholar 

  33. Lalla J, Bowen J, et al. MASCC = ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014; doi:10.1002/cncr.28592.

  34. Chow R, Armati P, Laakso EL, et al. Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg. 2011;29(6):365–81.

    Article  PubMed  Google Scholar 

  35. Chung H, Dai T, Sharma SK, et al. The nuts and bolts of low level laser therapy. Ann Biomed Eng. 2012;40:516–33.

    Article  PubMed  Google Scholar 

  36. Poli R, Parker S. Achieving dental analgesia with the erbium chromium yttrium scandium gallium garnet laser (2780 nm): a protocol for painless conservative treatment. Photomed Laser Surg. 2015;33(7):1–8.

    Google Scholar 

  37. Lim HM, Lew KK, Tay DK. A clinical investigation of the efficacy of low level laser therapy in reducing orthodontic postadjustment pain. Am J Orthod Dentofacial Orthop. 1995;108:614–22.

    Article  PubMed  Google Scholar 

  38. Harazaki M, Isshiki Y. Soft laser irradiation effects on pain reduction in orthodontic treatment. Bull Tokyo Dent Coll. 1997;38:291–5.

    PubMed  Google Scholar 

  39. Harazaki M, Takahashi H, Ito A, Isshiki Y. Soft laser irradiation induced pain reduction in orthodontic treatment. Bull Tokyo Dent Coll. 1998;39:95–101.

    PubMed  Google Scholar 

  40. Fujiyama K, Deguchi T, Murakami T, Fujii A, Kushima K, Takano-Yamamoto T. Clinical effect of CO2 laser in reducing pain in orthodontics. Angle Orthod. 2008;78:299–303.

    Article  PubMed  Google Scholar 

  41. Tortamano A, Lenzi DC, Haddad AC, Bottino MC, Dominguez GC, Vigorito JW. Low-level laser therapy for pain caused by placement of the first orthodontic archwire: a randomized clinical trial. Am J Orthod Dentofacial Orthop. 2009;136:662–7.

    Article  PubMed  Google Scholar 

  42. Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am J Orthod Dentofacial Orthop. 2012;141:289–97.

    Article  PubMed  Google Scholar 

  43. Kim WT, Bayome M, Park JB, Park JH, Baek SH, Kook YA. Effect of frequent laser irradiation on orthodontic pain. A single-blind randomized clinical trial. Angle Orthod. 2013;83:611–6.

    Article  PubMed  Google Scholar 

  44. Artes-Ribas M, Arnabat-Dominguez J, Puigdollers A. Analgesic effect of a low-level laser therapy (830 nm) in early orthodontic treatment. Lasers Med Sci. 2013;28:335–41.

    Google Scholar 

  45. Dominguez A, Velasquez SA. Effect of low-level laser therapy on pain following activation of orthodontic final archwires: a randomized controlled clinical trial. Photomed Laser Surg. 2013;31:36–40.

    Article  PubMed  Google Scholar 

  46. Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A, Badiee MR, Fekrazad R. The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci. 2013;29:559–64.

    Article  PubMed  Google Scholar 

  47. Nobrega C, da Silva EM, de Macedo CR. Low-level laser therapy for treatment of pain associated with orthodontic elastomeric separator placement: a placebo-controlled randomized double-blind clinical trial. Photomed Laser Surg. 2013;31:10–6.

    Article  PubMed  Google Scholar 

  48. Abtahi SM, Mousavi SA, Shafaee H, Tanbakuchi B. Effect of low-level laser therapy on dental pain induced by separator force in orthodontic treatment. J Dent Res. 2013;10:647–51.

    Google Scholar 

  49. Herravi F, Moradi A, Ahrari F. The effect of low level laser therapy on the rate of tooth movement and pain perception during canine retraction. Oral Health Dent Manag. 2014;13:183–8.

    Google Scholar 

  50. Niemz M. Laser tissue interactions. 3rd ed. Heidelberg: Springer-Verlag; 2007. ISBN: 978-3-540-72191-8

    Book  Google Scholar 

  51. Goodman CS. Report from the Swedish council on technology assessment in health care (SBU). literature searching and evidence interpretation for assessing health care practices. Int J Technol Assess Health Care. 1994;10:714–5.

    Article  Google Scholar 

  52. Krishnan V, Davidovich Z. Mechanisms of tooth movement. Wiley; 2015; ISBN: 978–1–118-68887-8.

    Google Scholar 

  53. Huang YY, Sharma S, Carroll J, et al. Biphasic dose response in low level laser therapy. Dose Response. 2011;9:602–18.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bakthisaran R, Tangirala R, Rao M. Small heat shock proteins: role in cellular function and pathology. Biochim Biophys Acta. 1854;2015:291–319.

    Google Scholar 

  55. Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell. 2010;40:253–66.

    Article  PubMed  Google Scholar 

  56. Agrawal T, Gupta G, Rai V, et al. Pre-conditioning with low level laser (light) therapy: light before the storm. Dose Response. 2014;12:619–49.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Haxsen V, Schikora D, Sommer U, et al. Relevance of laser irradiance threshold in the induction of alkaline phosphatase in human osteoblast culture. Lasers Med Sci. 2008;23:381–4.

    Article  PubMed  Google Scholar 

  58. Kesler G, et al. Platelet derived growth factor secretion and bone healing after Er:YAG laser bone irradiation. J Oral Implantol. 2011;37:195–204.

    Article  PubMed  Google Scholar 

  59. Pagin M, et al. Laser and light emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci. 2014;29:55–9.

    Article  PubMed  Google Scholar 

  60. Choi EJ, et al. Biological effects of a semi-conductor diode laser on human periodontal ligament fibroblasts. J Periodontal Implant Sci. 2010;40(3):105–10.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Altan A, Sokucu O, Ozkut M, et al. Metrical and histological effects of low level laser therapy on orthodontic tooth movement. Lasers Med Sci. 2012;27(1):131–40.

    Article  PubMed  Google Scholar 

  62. Rosa CB, Habib FA, de Araujo TM, et al. Effect of the laser and light emitting diode (LED) phototherapy on mid palatal suture bone formation after rapid maxillary expansion: a Raman spectroscopy analysis. Lasers Med Sci. 2014;29(3):859–67.

    PubMed  Google Scholar 

  63. Shirazi M, Akhoundi A, Javadi E, et al. The effects of diode laser (660 nm) on the rate of tooth movement an animal study. Lasers Med Sci. 2015;30(2):713–8.

    Google Scholar 

  64. Cossetin E, Janson G, de Carvalho MG, et al. Influence of low level laser on bone remodelling during induced tooth movement in rats. Angle Orthod. 2013;83(6):1015–21.

    Article  PubMed  Google Scholar 

  65. Ekizer A, Uysal T, Yuksel Y. Light emitting diode photobiomodulation: effect on bone formation in orthopedically expanded suture in rats – early bone changes. Lasers Med Sci. 2013;28:1263–70.

    Google Scholar 

  66. Ekizer A, Uysal T, Guray E, et al. Effect of LED mediated photobiomodulation therapy on orthodontic tooth movement and root resorption in rats. Lasers Med Sci. 2015;30:779–85.

    Article  PubMed  Google Scholar 

  67. Fonseca P, de Lima FM, Higashi DT, et al. Effects of light emitting diode (LED) therapy at 940 nm on inflammatory root resorption in rats. Lasers Med Sci. 2013;28(1):49–55.

    Google Scholar 

  68. Suzuki SS, Garcez AS, Suzuki H, et al. Low level laser therapy stimulates bone metabolism and inhibits root resorption during tooth movement in a rodent model. J Biophotonics. 2016; doi:10.1002/jbio.201600016.

    PubMed  Google Scholar 

  69. Cruz D, Kohara E, Ribeiro M, et al. Effects of low intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med. 2004;35:117–20.

    Article  PubMed  Google Scholar 

  70. Limpanichkul W, Godfrey K, Srisuk N, et al. Effects of low level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res. 2006;9:38–43.

    Article  PubMed  Google Scholar 

  71. Youssef M, Ashkar S, Hamade E, et al. The effect of low level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci. 2008;23:27–33.

    Article  PubMed  Google Scholar 

  72. Sousa MV, Scanavini MA, Sannomiya EK, et al. Influence of low level laser therapy on the speed of orthodontic movement. Photomed Laser Surg. 2011;29:191–6.

    Google Scholar 

  73. Genc G, Kocadereli I, Tasar F, et al. Effect of low level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci. 2013;28:41–7.

    Article  PubMed  Google Scholar 

  74. http://waltza.co.za/wp-content/uploads/2012/08/Dose_table_780-860nm_for_Low_Level_Laser_Therapy_WALT-2010.pdf.

  75. Kau CH, Kantarci A, Shaugnessy T, et al. Photobiomodulation accelerates orthodontic tooth alignment in the early phase of treatment. Prog Orthod. 2013;14:30–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chung SE, Tompson B, Gong S-G. The effect of light emitting diode phototherapy on rate of orthodontic tooth movement: a split mouth controlled clinical trial. J Orthod. 2015;42(4):274–83.

    Article  PubMed  Google Scholar 

  77. Shaughnessy TG. Long distance orthodontic treatment with adjunctive light therapy. J Clin Orthod. 2015;49(12):757–69.

    PubMed  Google Scholar 

  78. Ojima K, Dan C, Kumagai Y, et al. Invisalign treatment accelerated by photobiomodulation. J Clin Orthod. 2016;50(5):309–17.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Borzabadi-Farahani DDS, MScD, MOrth RCS (Ed) , Mark Cronshaw BSc, BDS, LDS RCS(Eng), MSc , Ali Borzabadi-Farahani DDS, MScD, MOrth RCS (Ed) or Mark Cronshaw BSc, BDS, LDS RCS(Eng), MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Borzabadi-Farahani, A., Cronshaw, M. (2017). Lasers in Orthodontics. In: Coluzzi, D., Parker, S. (eds) Lasers in Dentistry—Current Concepts. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-51944-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51944-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51943-2

  • Online ISBN: 978-3-319-51944-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics