A Synthesized Urban Science in the Context of Big Data and Cyberinfrastructure

  • Xinyue YeEmail author
  • Wenwen Li
  • Qunying Huang
Part of the Advances in Geographic Information Science book series (AGIS)


In today’s gradually connected world of virtual, perceived, and real spaces, data-driven urban computing and analytics have become increasingly essential for the understanding of coupled human and socioeconomic dynamics. The complexities of such systems and their connectivity at various spatial, temporal, and semantic scales have posed daunting challenges to urban researchers. Due to the rapid progress of information and communications technology, the emergence of big data available from various sources has presented significant opportunities for urban studies. Rigorous analysis of such data depicting complex socioeconomic events is likely to open up a rich context for advancing urban sciences and policy interventions. Interdisciplinary approaches combining with rich spatial data are urgently needed to ignite transformative geospatial innovation and discovery for enabling effective and timely solutions to challenging problems. This book chapter highlights the challenges and opportunities of a synthesized urban science based on ever-increasing amounts of large-scale diverse data and computing power.


Urban science Big data Cyberinfrastructure Human dynamics 



This material is based upon the work supported by the National Science Foundation under Grant No. 1416509, 1535031, and 1637242. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.


  1. Ackland, R. (2009). Social network services as data sources and platforms for e-researching social networks. Social Science Computer Review, 27, 481–492.CrossRefGoogle Scholar
  2. Ainsworth, S., Honey, M., Johnson, W. L., Koedinger, K. R., Muramatsu, B., Pea, R. D., Recker, M., & Weimar, S. (2005). Cyberinfrastructure for education and learning for the future: A vision and research agenda. Washington, DC: Computing Research Association.Google Scholar
  3. Anselin, L., & Rey, S. J. (2012). Spatial econometrics in an age of CyberGIScience. International Journal of Geographical Information Science, 26(12), 2211–2226.CrossRefGoogle Scholar
  4. Appleford, S., Bottum, J. R., & Thatcher, J. B. (2014). Understanding the social web: Towards defining an interdisciplinary research agenda for information systems. ACM SIGMIS Database, 45(1), 29–37.CrossRefGoogle Scholar
  5. Arzberger, P., Schroeder, P., Beaulieu, A., Bowker, G., Casey, K., Laaksonen, L., et al. (2004). Promoting access to public research data for scientific, economic, and social development. Data Science Journal, 3, 135–152.CrossRefGoogle Scholar
  6. Berman, F. D., & Brady, H. E. (2005). Final report: NSF SBE-CISE workshop on cyberinfrastructure and the social sciences. Arlington: National Science Foundation.Google Scholar
  7. Bol, P. K. (2013). On the Cyberinfrastructure for GIS-enabled historiography: Space–time integration in geography and GIScience. Annals of the Association of American Geographers, 103(5), 1087–1092.CrossRefGoogle Scholar
  8. Chai, S., Sharman, R., Patil, S., Satam, S., Rao, H. R., & Upadhyaya, S. (2007, May). Surface transportation and cyber-infrastructure: An exploratory study. In Intelligence and Security Informatics, 2007 IEEE (pp. 124–128).Google Scholar
  9. Chen, Z., Shang, J., & Gao, Y. (2010). Study on the evaluation of the basic and welfare information system. Science and Technology Management Research, 13, 060.Google Scholar
  10. Chismar, W., Horan, T. A., Hesse, B. W., Feldman, S. S., & Shaikh, A. R. (2011). Health cyberinfrastructure for collaborative use-inspired research and practice. American Journal of Preventive Medicine, 40(5), S108–S114.CrossRefGoogle Scholar
  11. Chong, Z., Qin, C., & Ye, X. (2016). Environmental regulation, economic network and sustainable growth of urban agglomerations in China. Sustainability, 8, 467.CrossRefGoogle Scholar
  12. Clarke, H. D., Sanders, D., Stewart, M. C., & Whiteley, P. (2008). Internet surveys and national election studies: A symposium. Journal of Elections, Public Opinion and Parties, 18(4), 327–330.CrossRefGoogle Scholar
  13. Contractor, N., & Hesse, B. W. (2006, May). Cyberinfrastructure for public health. In Proceedings of the 2006 International Conference on Digital Government Research (pp. 9–10). Digital Government Society of North America.Google Scholar
  14. Crane, G., Seales, B., & Terras, M. (2009). Cyberinfrastructure for classical philology. Digital Humanities Quarterly, 3(1).Google Scholar
  15. De La Flor, G., Jirotka, M., Luff, P., Pybus, J., & Kirkham, R. (2010). Transforming scholarly practice: Embedding technological interventions to support the collaborative analysis of ancient texts. Computer Supported Cooperative Work (CSCW), 19(3–4), 309–334.CrossRefGoogle Scholar
  16. Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.CrossRefGoogle Scholar
  17. Fromm, H., & Bloehdorn, S. (2014). Big data – Technologies and potential enterprise-integration (pp. 107–124). Berlin: Springer.Google Scholar
  18. Gao, S., Li, L., Li, W., Janowicz, K., & Zhang, Y. (2014). Constructing gazetteers from volunteered big geo-data based on Hadoop. Computers, Environment and Urban Systems, 43, 1–13.CrossRefGoogle Scholar
  19. Goedert, J. D., Pawloski, R., Rokooeisadabad, S., & Subramaniam, M. (2013). Project-oriented pedagogical model for construction engineering education using Cyberinfrastructure tools. Journal of Professional Issues in Engineering Education and Practice, 139(4), 301–309.CrossRefGoogle Scholar
  20. Huang, Q., & Wong, D. W. (2015). Modeling and visualizing regular human mobility patterns with uncertainty: An example using twitter data. Annals of the Association of American Geographers, 105, 1–19.CrossRefGoogle Scholar
  21. Huang, Q., & Xu, C. (2014). A data-driven framework for archiving and exploring social media data. Annals of GIS, 20(4), 265–277.CrossRefGoogle Scholar
  22. Huang, Q., Yang, C., Benedict, K., Chen, S., Rezgui, A., & Xie, J. (2013a). Utilize cloud computing to support dust storm forecasting. International Journal of Digital Earth, 6(4), 338–355.CrossRefGoogle Scholar
  23. Huang, Q., Yang, C., Liu, K., Xia, J., Xu, C., Li, J., et al. (2013b). Evaluating open-source cloud computing solutions for geosciences. Computers & Geosciences, 59, 41–52.CrossRefGoogle Scholar
  24. Huang, Q., Cervone, G., Jing, D., & Chang, C. (2015). DisasterMapper: A CyberGIS framework for disaster management using social media data. In ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data ACM, Seattle.Google Scholar
  25. Huang, X., Zhao, Y., Yang, J., Zhang, C., Ma, C., & Ye, X. (2016). TrajGraph: A graph-based visual analytics approach to studying urban network centralities using taxi trajectory data. IEEE Transactions on Visualization and Computer Graphics, 22(1), 160–169.CrossRefGoogle Scholar
  26. Hunt, L., Lundberg, M., & Zuckerman, B. (2011). Getting beyond the common denominator. Literary and Linguistic Computing, 26, 217–231. fqr007.CrossRefGoogle Scholar
  27. Johri, A., & Olds, B. M. (2011). Situated engineering learning: Bridging engineering education research and the learning sciences. Journal of Engineering Education, 100(1), 151–185.CrossRefGoogle Scholar
  28. Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53(1), 59–68.CrossRefGoogle Scholar
  29. Kim, I. H. (2012). Developing high performance GIS simulation models on geospatial cyberinfrastructure: A case study of population change models with grid computing and cloud computing technologies. Santa Barbara: University of California.Google Scholar
  30. Kim, Y., Addom, B. K., & Stanton, J. M. (2011). Education for eScience professionals: Integrating data curation and cyberinfrastructure. International Journal of Digital Curation, 6(1), 125–138.CrossRefGoogle Scholar
  31. Kintigh, K. (2006). The promise and challenge of archaeological data integration. American Antiquity, 567–578.Google Scholar
  32. Leberecht, T. (2010). Twitter grows up in aftermath of Haiti earthquake. CNET News, p. 19.Google Scholar
  33. Lee, C. P., Dourish, P., & Mark, G. (2006, November). The human infrastructure of cyberinfrastructure. In Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work (pp. 483–492), ACM.Google Scholar
  34. Li, Q., Zhang, T., & Yu, Y. (2011a). Using cloud computing to process intensive floating car data for urban traffic surveillance. International Journal of Geographical Information Science, 25(8), 1303–1322.CrossRefGoogle Scholar
  35. Li, W., Yang, C., Nebert, D., Raskin, R., Houser, P., Wu, H., & Li, Z. (2011b). Semantic-based web service discovery and chaining for building an Arctic spatial data infrastructure. Computers & Geosciences, 37(11), 1752–1762.CrossRefGoogle Scholar
  36. Li, J., Jiang, Y., Yang, C., Huang, Q., & Rice, M. (2013a). Visualizing 3D/4D environmental data using many-core graphics processing units (GPUs) and multi-core central processing units (CPUs). Computers & Geosciences, 59, 78–89.CrossRefGoogle Scholar
  37. Li, W., Li, L., Goodchild, M. F., & Anselin, L. (2013b). A geospatial cyberinfrastructure for urban economic analysis and spatial decision-making. ISPRS International Journal of Geo-Information, 2(2), 413–431.CrossRefGoogle Scholar
  38. Li, W., Bhatia, V., & Cao, K. (2014a). Intelligent polar cyberinfrastructure: Enabling semantic search in geospatial metadata catalogue to support polar data discovery. Earth Science Informatics, 8(1), 111–123.CrossRefGoogle Scholar
  39. Li, W., Goodchild, M. F., & Raskin, R. (2014b). Towards geospatial semantic search: Exploiting latent semantic relations in geospatial data. International Journal of Digital Earth, 7(1), 17–37.CrossRefGoogle Scholar
  40. Li, W., Wang, S., & Bhatia, V. (2015a). PolarHub: A large-scale cybersearch engine for geospatial data discoverability and accessibility. International Journal of Geographic Information Science (to appear).Google Scholar
  41. Li, W., Song, M., Zhou, B., Cao, K., & Gao, S. (2015b). Performance improvement techniques for geospatial web services in a cyberinfrastructure environment–A case study with a disaster management portal. Computers, Environment and Urban Systems, 54, 314–325.CrossRefGoogle Scholar
  42. Li, S., Ye, X, Lee, J., Gong, J., & Qin, C. (2016). Spatiotemporal analysis of housing prices in China: A big data perspective. Applied Spatial Analysis and Policy. doi:  10.1007/s12061-016-9185-3.
  43. Lippincott, J. K. (2002, February). Cyberinfrastructure: Opportunities for connections and collaboration. In E-volving Information Futures: 11th VALA Biennial Conference and Exhibition (pp. 437–450).Google Scholar
  44. Mabry, P. L., Olster, D. H., Morgan, G. D., & Abrams, D. B. (2008). Interdisciplinarity and systems science to improve population health: A view from the NIH office of behavioral and social sciences research. American Journal of Preventive Medicine, 35(2), S211–S224.CrossRefGoogle Scholar
  45. Mahinthakumar, K., von Laszewski, G., Ranjithan, R., Brill, D., Uber, J., Harrison, K., & Zechman, E. (2006). An adaptive cyberinfrastructure for threat management in urban water distribution systems. In Computational Science–ICCS 2006 (pp. 401–408). Berlin Heidelberg: Springer.Google Scholar
  46. Michener, W. K., Allard, S., Budden, A., Cook, R. B., Douglass, K., Frame, M., et al. (2012). Participatory design of DataONE – Enabling cyberinfrastructure for the biological and environmental sciences. Ecological Informatics, 11, 5–15.CrossRefGoogle Scholar
  47. Nambiar, R., Chitor, R., & Joshi, A. (2014). Data management–A look back and a look ahead specifying big data benchmarks (pp. 11–19). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  48. Newman, G., Wiggins, A., Crall, A., Graham, E., Newman, S., & Crowston, K. (2012). The future of citizen science: Emerging technologies and shifting paradigms. Frontiers in Ecology and the Environment, 10(6), 298–304.CrossRefGoogle Scholar
  49. Oh, O., Kwon, K. H., & Rao, H. R. (2010). An exploration of social media in extreme events: Rumor theory and twitter during the Haiti earthquake 2010. Paper presented at the ICIS.Google Scholar
  50. Ramamurthy, M. K. (2006). A new generation of cyberinfrastructure and data services for earth system science education and research. Advances in Geosciences, 8(8), 69–78.CrossRefGoogle Scholar
  51. Rey, S. J. (2009). Show me the code: Spatial analysis and open source. Journal of Geographical Systems, 11(2), 191–207. doi: 10.1007/s10109-009-0086-8.CrossRefGoogle Scholar
  52. Riteau, P., Hwang, M., Padmanabhan, A., Gao, Y., Liu, Y., Keahey, K., & Wang, S. (2014). A cloud computing approach to on-demand and scalable cybergis analytics. Paper presented at the Proceedings of the 5th ACM Workshop on Scientific Cloud Computing.Google Scholar
  53. Savage, S. H., & Levy, T. (2014). The Mediterranean archaeological network–A cyberinfrastructure for archaeological heritage management. Mediterranean Archaeology and Archaeometry, 14(4), 135–141.Google Scholar
  54. Sawyer, S., Kaziunas, E., & Øesterlund, C. (2012, February). Social scientists and cyberinfrastructure: Insights from a document perspective. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work (pp. 931–934),s ACM.Google Scholar
  55. Schadt, E. E., Linderman, M. D., Sorenson, J., Lee, L., & Nolan, G. P. (2010). Computational solutions to large-scale data management and analysis. Nature Reviews Genetics, 11(9), 647–657.CrossRefGoogle Scholar
  56. Shaw, S., Tsou, M., & Ye, X. (2016) Human dynamics in the mobile and big data era. International Journal of Geographical Information Science (forthcoming).Google Scholar
  57. Sreepathi, S., Mahinthakumar, K., Zechman, E., Ranjithan, R., Brill, D., Ma, X., & Von Laszewski, G. (2007). Cyberinfrastructure for contamination source characterization in water distribution systems (pp. 1058–1065). Berlin Heidelberg: Springer.Google Scholar
  58. Tang, W., Wang, S., Bennett, D. A., & Liu, Y. (2011). Agent-based modeling within a cyberinfrastructure environment: A service-oriented computing approach. International Journal of Geographical Information Science, 25(9), 1323–1346.CrossRefGoogle Scholar
  59. Tokuda, H., Hagino, T., Murai, J., Sone, Y., & Umegaki, M. (2004, January). Cyber infrastructure and governance of next decades. In null (p. 453). IEEE.Google Scholar
  60. Torrens, P. M. (2010). Geography and computational social science. GeoJournal, 75(2), 133–148.CrossRefGoogle Scholar
  61. Tsai, W. F., Huang, W., Lin, F. P., Hung, B., Wang, Y. T., Shiau, S., et al. (2008). The human-centered cyberinfrastructure for scientific and engineering grid applications. Journal of the Chinese institute of engineers, 31(7), 1127–1139.CrossRefGoogle Scholar
  62. Tsivian, Y. (2009). Cinemetrics, part of the humanities’ cyberinfrastructure. Digital Tools in Media Studies, 9, 93–100.Google Scholar
  63. van der Linden, G. W., Emami-Naeini, A., Zhang, Y., & Lynch, J. P. (2013, April). Cyber-infrastructure design and implementation for structural health monitoring. In SPIE smart structures and materials+ Nondestructive evaluation and health monitoring (p. 869419). San Diego: International Society for Optics and Photonics.Google Scholar
  64. Viswanath, K. (2011). Cyberinfrastructure: An extraordinary opportunity to bridge health and communication inequalities? American Journal of Preventive Medicine, 40(5), S245–S248.CrossRefGoogle Scholar
  65. Wang, S. (2010). A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. Annals of the Association of American Geographers, 100(3), 535–557.CrossRefGoogle Scholar
  66. Wang, S., & Armstrong, M. P. (2009). A theoretical approach to the use of cyberinfrastructure in geographical analysis. International Journal of Geographical Information Science, 23(2), 169–193.CrossRefGoogle Scholar
  67. Wang, S., Anselin, L., Bhaduri, B., Crosby, C., Goodchild, M. F., Liu, Y., & Nyerges, T. L. (2013). CyberGIS software: A synthetic review and integration roadmap. International Journal of Geographical Information Science, 27(11), 2122–2145.CrossRefGoogle Scholar
  68. Wang, L., Chen, D., Liu, W., Ma, Y., Wu, Y., & Deng, Z. (2014). DDDAS-based parallel simulation of threat management for urban water distribution systems.Computing in. Science & Engineering, 16(1), 8–17.Google Scholar
  69. Wang, Y., Wang, T., Ye, X., Zhu, J., & Lee, J. (2015). Using social media for emergency response and urban sustainability: A case study of the 2012 Beijing rainstorm. Sustainability, 8(1), 25.CrossRefGoogle Scholar
  70. Wang, Z., Ye, X., & Tsou, M. (2016). Spatial, temporal, and content analysis of Twitter for wildfire hazards. Natural Hazards DOI. doi: 10.1007/s11069-016-2329-6.
  71. Welshons, M. (Ed.). (2006). Our cultural commonwealth: The report of the American Council of learned societies commission on cyberinfrastructure for the humanities and social sciences. New York: American Council of Learned Societies.Google Scholar
  72. Widener, M. J., & Li, W. (2014). Using geolocated Twitter data to monitor the prevalence of healthy and unhealthy food references across the US. Applied Geography, 54, 189–197.CrossRefGoogle Scholar
  73. Xia, Y., Hu, J., & Fontaine, M. D. (2013a). A cyber-ITS framework for massive traffic data analysis using cyber infrastructure. The Scientific World Journal, 2013.Google Scholar
  74. Xia, Y., Li, X., & Shan, Z. (2013b). Parallelized fusion on multisensor transportation data: A case study in cyberits. International Journal of Intelligent Systems, 28(6), 540–564.CrossRefGoogle Scholar
  75. Xu, C., Wong, D. W., & Yang, C. (2013). Evaluating the “geographical awareness” of individuals: An exploratory analysis of Twitter data. Cartography and Geographic Information Science, 40(2), 103–115.CrossRefGoogle Scholar
  76. Yang, C., Li, W., Xie, J., & Zhou, B. (2008). Distributed geospatial information processing: Sharing distributed geospatial resources to support digital earth. International Journal of Digital Earth, 1(3), 259–278.CrossRefGoogle Scholar
  77. Yang, C., Goodchild, M., Huang, Q., Nebert, D., Raskin, R., Xu, Y., et al. (2011). Spatial cloud computing: How can the geospatial sciences use and help shape cloud computing? International Journal of Digital Earth, 4(4), 305–329.CrossRefGoogle Scholar
  78. Yang, X., Ye, X., & Sui, D. Z. (2016). We know where you are: In space and place-enriching the geographical context through social media. International Journal of Applied Geospatial Research (IJAGR), 7(2), 61–75.CrossRefGoogle Scholar
  79. Ye, X. (2016a). Spatial econometrics. New York: The Wiley-AAG International Encyclopedia of Geography.Google Scholar
  80. Ye, X. (2016b). Open data and open source GIS. In T. Cova & M. Tsou (Eds.), GIS principles and technical designs of GIS. Elsevier.Google Scholar
  81. Ye, X. (2016c). Social media response to social events and emergencies: A spatial perspective. In L. Schintler & Z. Chen (Eds.), Big data for urban and regional science. Routledge.Google Scholar
  82. Ye, X., & Lee, J. (2016). Integrating geographic activity space and social network space to promote healthy lifestyles. ACMSIGSPATIAL Health GIS Newsletter, 8, 24–33.Google Scholar
  83. Ye, X., Huang, Q., & Li, W. (2016a). Integrating big social data. Computing, and Modeling for Spatial Social Science, Cartography and Geographic Information Science. doi: 10.1080/15230406.2016.1212302.
  84. Ye, X., She, B., Zhao, H., & Zhou, X. (2016b). A taxonomic analysis of perspectives in generating space-time research questions in environmental sciences. International Journal of Applied Geospatial Research. doi: 10.4018/IJAGR.2016040104.
  85. Yue, P., Gong, J., & Di, L. (2010). Augmenting geospatial data provenance through metadata tracking in geospatial service chaining. Computers & Geosciences, 36(3), 270–281.CrossRefGoogle Scholar
  86. Zhu, X., She, B., Guo, W., Bao, S., & Chen, D. (2015). Integrating spatial data linkage and analysis Services in a geoportal for China urban research. Transactions in GIS, 19(1), 107–128.CrossRefGoogle Scholar
  87. Zikopoulos, P., & Eaton, C. (2011). Understanding big data: Analytics for enterprise class hadoop and streaming data: McGraw-Hill Osborne Media.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of GeographyKent State UniversityKentUSA
  2. 2.GeoDa Center for Geospatial Analysis and ComputationSchool of Geographical Sciences and Urban Planning, Arizona State UniversityTempeUSA
  3. 3.Department of GeographyUniversity of WisconsinMadisonUSA

Personalised recommendations