The Stochastic Processes Generation in OpenModelica

  • Migran Gevorkyan
  • Michal Hnatich
  • Ivan M. Gostev
  • A. V. Demidova
  • Anna V. Korolkova
  • Dmitry S. Kulyabov
  • Leonid A. SevastianovEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 678)


This paper studies program implementation problem of pseudo-random number generators in OpenModelica. We give an overview of generators of pseudo-random uniform distributed numbers. They are used as a basis for construction of generators of normal and Poisson distributions. The last step is the creation of Wiener and Poisson stochastic processes generators. We also describe the algorithm to call external C-functions from programs written in Modelica. This allows us to use random number generators implemented in the C language.


Modelica OpenModelica Random generator Wiener process Poisson process SDE 



The work is partially supported by RFBR grants No’s 14-01-00628, 15-07-08795, and 16-07-00556. Also the publication was supported by the Ministry of Education and Science of the Russian Federation (the Agreement No. 02.a03.21.0008).


  1. 1.
  2. 2.
    LAPACKLinear Algebra PACKage.
  3. 3.
  4. 4.
    MapleSim - High Performance Physical Modeling and Simulation - Technical Computing Software.
  5. 5.
    Modelica and the Modelica Association Official Site.
  6. 6.
    Multi-Engineering Modeling and Simulation - Dymola - CATIA.
  7. 7.
    OpenModelica Official Site.
  8. 8.
    SciLab Official Site.
  9. 9.
    SuiteSparse: A Suite of Sparse Matrix Software.
  10. 10.
  11. 11.
    Using GNU Fortran (2015).
  12. 12.
    Python 3.5.1 Documentation, March 2016.
  13. 13.
    Ahrens, J.H., Dieter, U.: Computer methods for sampling from gamma, beta, poisson and bionomial distributions. Computing 12(3), 223–246 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ahrens, J.H., Dieter, U.: Computer generation of poisson deviates from modified normal distributions. ACM Trans. Math. Softw. 8(2), 163–179 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bell, J.R.: Algorithm 334: normal random deviates. Commun. ACM 11(7), 498 (1968)CrossRefGoogle Scholar
  16. 16.
    Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat. 29(2), 610–611 (1958)CrossRefzbMATHGoogle Scholar
  17. 17.
    Brown, R.G., Eddelbuettel, D., Bauer, D.: Dieharder: A Random Number Test Suite (2013).
  18. 18.
    Collier, A.M., Hindmarsh, A.C., Serban, R., Dward, C.S.W.: User Documentation for KINSOL v2.8.2 (2015).
  19. 19.
    Devroye, L.: Non-Uniform Random Variate Generation. Springer-Verlag, New York (1986)CrossRefzbMATHGoogle Scholar
  20. 20.
    Galassi, M., Gough, B., Jungman, G., Theiler, J., Davies, J., Booth, M., Rossi, F.: The GNU Scientific Library Reference Manual (2015).
  21. 21.
    Klckner, A., van der Linden, F.L.J., Zimmer, D.: Noise generation for continuous system simulation. In: Proceedings of the 10th International Modelica Conference, Lund, Sweden, pp. 837–846 (2014)Google Scholar
  22. 22.
    Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, 2nd edn. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  23. 23.
    Knop, R.: Remark on algorithm 334 [g5]: normal random deviates. Commun. ACM 12(5), 281 (1969)CrossRefGoogle Scholar
  24. 24.
    Knuth, D.E.: The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algorithms, vol. 2. Addison-Wesley Longman Publishing Co. Inc., Boston (1997)Google Scholar
  25. 25.
    L’Ecuyer, P.: Combined multiple recursive random number generators. Oper. Res. 44(5), 816–822 (1996)CrossRefzbMATHGoogle Scholar
  26. 26.
    L’Ecuyer, P.: Tables of linear congruential generators of different sizes and good lattice structure. Math. Comput. 68(225), 249–260 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    L’Ecuyer, P., Blouin, F., Couture, R.: A search for good multiple recursive random number generators. ACM Trans. Modeling Comput. Simul. (TOMACS) 3(2), 87–98 (1993)CrossRefzbMATHGoogle Scholar
  28. 28.
    L’Ecuyer, P., Simard, R.: Testu01: AC library for empirical testing of random number generators. ACM Trans. Mathe. Softw. (TOMS) 33(4), 22 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Marsaglia, G.: Xorshift RNGs. J. Stat. Softw. 8(1), 1–6 (2003)Google Scholar
  30. 30.
    Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)CrossRefzbMATHGoogle Scholar
  31. 31.
    Nishida, A., Fujii, A., Oyanagi, Y.: Lis: Library of Iterative Solvers for Linear Systems.
  32. 32.
    Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  33. 33.
    Panneton, F., L’Ecuyer, P.: On the xorshift random number generators. ACM Trans. Model. Comput. Simul. 15(4), 346–361 (2005)CrossRefGoogle Scholar
  34. 34.
    Platen, E., Bruti-Liberati, N.: Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  35. 35.
    Rose, G.: Kiss: A Bit Too Simple (2011).

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Migran Gevorkyan
    • 1
  • Michal Hnatich
    • 3
    • 4
    • 5
  • Ivan M. Gostev
    • 6
  • A. V. Demidova
    • 1
  • Anna V. Korolkova
    • 1
  • Dmitry S. Kulyabov
    • 1
    • 2
  • Leonid A. Sevastianov
    • 1
    • 3
    Email author
  1. 1.Department of Applied Probability and InformaticsRUDN University (Peoples’ Friendship University of Russia)MoscowRussia
  2. 2.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubna, Moscow RegionRussia
  3. 3.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow RegionRussia
  4. 4.Department of Theoretical PhysicsSAS, Institute of Experimental PhysicsKošiceSlovakia
  5. 5.Faculty of SciencePavol Jozef Šafárik University in Košice (UPJŠ)KošiceSlovakia
  6. 6.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations