Skip to main content

The Coupled-Channel Method for Modelling Quantum Transmission of Composite Systems

  • Conference paper
  • First Online:
  • 730 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 678))

Abstract

The description of quantum transmission of composite systems of barriers or wells using the coupled-channel method is presented. In this approach the multichannel scattering problem for the Schrödinger equation is reduced to a set of coupled second-order ordinary differential equations with the boundary conditions of the third type and solved using the finite element method. The efficiency of the proposed approach is demonstrated by the example of analyzing metastable states that appear in composite quantum systems tunnelling through barriers and wells and give rise to the quantum transparency and total reflection effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 3.0: new version of a program for computing energy levels, reflection and transmission matrices, and corresponding wave functions in the coupled-channel adiabatic approach. Comput. Phys. Commun. 185, 3341–3343 (2014)

    Article  MATH  Google Scholar 

  2. Gusev, A.A., Hai, L.L.: Algorithm for solving the two-dimensional boundary value problem for model of quantum tunneling of a diatomic molecule through repulsive barriers. Bull. Peoples’ Friendsh. Univ. Russia. Ser. “Math. Inf. Sci. Phys.” 1, 15–36 (2015)

    Google Scholar 

  3. Gusev, A.A., Hai, L.L., Chuluunbaatar, O., Vinitsky, S.I.: Programm KANTBP 4M for solving boundary-value problems for systems of ordinary differential equations of the second order (2015). http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m

  4. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Derbov, V.L., Góźdź, A., Krassovitskiy, P.M.: Metastable states of a composite system tunneling through repulsive barriers. Theor. Math. Phys. 186, 21–40 (2016)

    Google Scholar 

  5. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.: Symbolic-numerical algorithms to solve the quantum tunneling problem for a coupled pair of ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 175–191. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23568-9_14

    Chapter  Google Scholar 

  6. Gusev, A., Vinitsky, S., Chuluunbaatar, O., Rostovtsev, V., Hai, L., Derbov, V., Góźdź, A., Klimov, E.: Symbolic-numerical algorithm for generating cluster eigenfunctions: identical particles with pair oscillator interactions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 155–168. Springer, Heidelberg (2013). doi:10.1007/978-3-319-02297-0_14

    Chapter  Google Scholar 

  7. Vinitsky, S., Gusev, A., Chuluunbaatar, O., Rostovtsev, V., Hai, L., Derbov, V., Krassovitskiy, P.: Symbolic-numerical algorithm for generating cluster eigenfunctions: tunneling of clusters through repulsive barriers. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 427–442. Springer, Heidelberg (2013). doi:10.1007/978-3-319-02297-0_35

    Chapter  Google Scholar 

  8. Pen’kov, F.M.: Quantum transmittance of barriers for composite particles. J. Exp. Theor. Phys. 91, 698–705 (2000)

    Article  Google Scholar 

  9. Pen’kov, F.M.: Metastable states of a coupled pair on a repulsive barrier. Phys. Rev. A 62, 044701-1-4 (2000)

    Google Scholar 

  10. Pijper, E., Fasolino, A.: Quantum surface diffusion of vibrationally excited molecular dimers. J. Chem. Phys. 126, 014708-1-10 (2007)

    Article  Google Scholar 

  11. Chuluunbaatar, O., Gusev, A.A., Derbov, V.L., Krassovitskiy, P.M., Vinitsky, S.I.: Channeling problem for charged particles produced by confining environment. Phys. Atom. Nucl. 72, 768–778 (2009)

    Article  Google Scholar 

  12. Shotter, A.C., Shotter, M.D.: Quantum mechanical tunneling of composite particle systems: linkage to sub-barrier nuclear reactions. Phys. Rev. C 83, 054621 (2011)

    Article  Google Scholar 

  13. Tashkhodjaev, R.B., Muminov, A.I., Nasirov, A.K., von Oertzen, W., Yongseok, O.: Theoretical study of the almost sequential mechanism of true ternary fission. Phys. Rev. C 91, 054612 (2015)

    Google Scholar 

  14. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Hai, L.L., Derbov, V.L., Gozdz, A., Krassovitskiy, P.M.: Resonant tunneling of a few-body cluster through repulsive barriers. Phys. At. Nucl. 77, 389–413 (2014)

    Article  MATH  Google Scholar 

  15. Sato, T., Kayanuma, Y.: Quantum inelasticity in reflection of a composite particle. Europhys. Lett. 60, 331–336 (2002)

    Article  Google Scholar 

  16. Bertulani, C.A., Flambaum, V.V., Zelevinsky, V.G.: Tunneling of a composite particle: effects of intrinsic structure. J. Phys. G: Nucl. Part. Phys. 34, 2289–2295 (2007)

    Article  Google Scholar 

  17. Flambaum, V.V., Zelevinsky, V.G.: Quantum tunnelling of a complex system: effects of a finite size and intrinsic structure. J. Phys. G: Nucl. Part. Phys. 31, 355–360 (2005)

    Article  Google Scholar 

  18. Bertulani, C.A.: Tunneling of atoms, nuclei and molecules. Few-Body Syst. 56, 727–736 (2015)

    Article  Google Scholar 

  19. Esaki, L.: Long journey into tunneling. Rev. Mod. Phys. 46, 237–244 (1973)

    Article  Google Scholar 

  20. Lemasson, A., et al.: Modern rutherford experiment: tunneling of the most neutron-rich nucleus. Phys. Rev. Lett. 103, 232701 (2009)

    Article  Google Scholar 

  21. Lugovskoy, A.V., Bray, I.: Pseudostate description of diatomic-molecule scattering from a hard-wall potential. Phys. Rev. A 87, 012904 (2013)

    Article  Google Scholar 

  22. Bulatov, V.L., Kornilovitch, P.E.: Anomalous tunneling of bound pairs in crystal lattices. Europhys. Lett. 71, 352–358 (2005)

    Article  Google Scholar 

  23. Muradyan, G., Hakobyan, H., Muradyan, A.Z.: Tunneling dynamics of a two-atom system. J. Phys: Conf. Ser. 672, 012013 (2016)

    Google Scholar 

  24. Bondar, D.I., Liu, W.-K., Ivanov, M.Y.: Enhancement and suppression of tunneling by controlling symmetries of a potential barrier. Phys. Rev. A 82, 052112 (2010)

    Article  Google Scholar 

  25. Chuluunbaatar, O., Gusev, A.A., Derbov, V.L., Kaschiev, M.S., Melnikov, L.A., Serov, V.V., Vinitsky, S.I.: Calculation of a hydrogen atom photoionization in a strong magnetic field by using the angular oblate spheroidal functions. J. Phys. A 40, 11485–11524 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Vinitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Vinitsky, S.I., Gusev, A.A., Chuluunbaatar, O., Góźdź, A., Derbov, V.L. (2016). The Coupled-Channel Method for Modelling Quantum Transmission of Composite Systems. In: Vishnevskiy, V., Samouylov, K., Kozyrev, D. (eds) Distributed Computer and Communication Networks. DCCN 2016. Communications in Computer and Information Science, vol 678. Springer, Cham. https://doi.org/10.1007/978-3-319-51917-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51917-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51916-6

  • Online ISBN: 978-3-319-51917-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics