Advertisement

Diagram Representation for the Stochastization of Single-Step Processes

  • Ekaterina G. Eferina
  • Michal Hnatich
  • Anna V. Korolkova
  • Dmitry S. KulyabovEmail author
  • Leonid A. Sevastianov
  • Tatiana R. Velieva
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 678)

Abstract

Background. By the means of the method of stochastization of one-step processes we get the simplified mathematical model of the original stochastic system. We can explore these models by standard methods, as opposed to the original system. The process of stochastization depends on the type of the system under study. Purpose. We want to get a unified abstract formalism for stochastization of one-step processes. This formalism should be equivalent to the previously introduced. Methods. To unify the methods of construction of the master equation, we propose to use the diagram technique. Results. We get a diagram technique, which allows to unify getting master equation for the system under study. We demonstrate the equivalence of the occupation number representation and the state vectors representation by using a Verhulst model. Conclusions. We have suggested a convenient diagram formalism for unified construction of stochastic systems.

Keywords

Occupation numbers representation Fock space Dirac notation One-step processes Master equation Diagram technique 

Notes

Acknowledgments

The work is partially supported by RFBR grants No’s. 14-01-00628, 15-07-08795, and 16-07-00556. Also the publication was supported by the Ministry of Education and Science of the Russian Federation (the Agreement No. 02.a03.21.0008).

References

  1. 1.
    Basharin, G.P., Samouylov, K.E., Yarkina, N.V., Gudkova, I.A.: A new stage in mathematical teletraffic theory. Autom. Remote Control 70(12), 1954–1964 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cajori, F.: A History of Mathematical Notations, vol. 2 (1929)Google Scholar
  3. 3.
    Demidova, A.V., Korolkova, A.V., Kulyabov, D.S., Sevastianov, L.A.: The method of stochastization of one-step processes. In: Mathematical Modeling and Computational Physics, p. 67, JINR, Dubna (2013)Google Scholar
  4. 4.
    Demidova, A.V., Korolkova, A.V., Kulyabov, D.S., Sevastyanov, L.A.: The method of constructing models of peer to peer protocols. In: 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 557–562. IEEE Computer Society (2015)Google Scholar
  5. 5.
    Dirac, P.A.M.: A new notation for quantum mechanics. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 35, no. 03, p. 416 (1939)Google Scholar
  6. 6.
    Doi, M.: Second quantization representation for classical many-particle system. J. Phys. A: Math. Gen. 9(9), 1465–1477 (1976)CrossRefGoogle Scholar
  7. 7.
    Doi, M.: Stochastic theory of diffusion-controlled reaction. J. Phys. A: Math. Gen. 9(9), 1479–1495 (1976)CrossRefGoogle Scholar
  8. 8.
    Feller, W.: Die Grundlagen der Volterraschen Theorie des Kampfes ums Dasein in wahrscheinlichkeitstheoretischer Behandlung. Acta Biotheor. 5(1), 11–40 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Feller, W.: On the theory of stochastic processes, with particular reference to applications. In: Proceedings of the [First] Berkeley Symposium on Mathematical Statistics and Probability, pp. 403–432 (1949)Google Scholar
  10. 10.
    Gardiner, C.W.: Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics, Springer, Heidelberg (1985)Google Scholar
  11. 11.
    Gorban, A.N., Yablonsky, G.S.: Three waves of chemical dynamics. Math. Model. Nat. Phenom. 10(5), 1–5 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grassberger, P., Scheunert, M.: Fock-space methods for identical classical objects. Fortschr. Phys. 28(10), 547–578 (1980)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hnatič, M., Eferina, E.G., Korolkova, A.V., Kulyabov, D.S., Sevastyanov, L.A.: Operator approach to the master equation for the one-step process. In: EPJ Web of Conferences, vol. 108, p. 02027 (2016)Google Scholar
  14. 14.
    Hnatič, M., Honkonen, J., Lučivjanský, T.: Field-theoretic technique for irreversible reaction processes. Phys. Part. Nuclei 44(2), 316–348 (2013)CrossRefGoogle Scholar
  15. 15.
    Hnatich, M., Honkonen, J.: Velocity-fluctuation-induced anomalous kinetics of the \(A+A\rightarrow \) reaction. Phys. Rev. E, 3904–3911 (2000). Statistical physics, plasmas, fluids, and related interdisciplinary topics 61(4 Pt A)Google Scholar
  16. 16.
    Hnatich, M., Honkonen, J., Lučivjanský, T.: Field theory approach in kinetic reaction: role of random sources and sinks. Theoret. Math. Phys. 169(1), 1489–1498 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Janssen, H.K., Täuber, U.C.: The field theory approach to percolation processes. Ann. Phys. 315(1), 147–192 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier Science, North-Holland Personal Library, Amsterdam (2011)Google Scholar
  19. 19.
    Korolkova, A.V., Eferina, E.G., Laneev, E.B., Gudkova, I.A., Sevastianov, L.A., Kulyabov, D.S.: Stochastization of one-step processes in the occupations number representation. In: Proceedings - 30th European Conference on Modelling and Simulation, ECMS 2016, pp. 698–704 (2016)Google Scholar
  20. 20.
    Mobilia, M., Georgiev, I.T., Täuber, U.C.: Fluctuations and correlations in lattice models for predator-prey interaction. Phys. Rev. E 73(4), 040903 (2006)CrossRefGoogle Scholar
  21. 21.
    Peliti, L.: Path integral approach to birth-death processes on a lattice. J. de Phys. 46(9), 1469–1483 (1985)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Penrose, R., Rindler, W.: Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields, vol. 1. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  23. 23.
    Täuber, U.C.: Field-theory approaches to nonequilibrium dynamics. In: Ageing and the Glass Transition, vol. 716, pp. 295–348. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Velieva, T.R., Korolkova, A.V., Kulyabov, D.S.: Designing installations for verification of the model of active queue management discipline RED in the GNS3. In: 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 570–577. IEEE Computer Society (2015)Google Scholar
  25. 25.
    Verhulst, P.F.: Notice sur la loi que la population suit dans son accroissement, vol. 10 (1838)Google Scholar
  26. 26.
    Waage, P., Gulberg, C.M.: Studies concerning affinity. J. Chem. Educ. 63(12), 1044 (1986)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ekaterina G. Eferina
    • 1
  • Michal Hnatich
    • 3
    • 4
    • 5
  • Anna V. Korolkova
    • 1
  • Dmitry S. Kulyabov
    • 1
    • 2
    Email author
  • Leonid A. Sevastianov
    • 1
    • 3
  • Tatiana R. Velieva
    • 1
  1. 1.Department of Applied Probability and InformaticsRUDN University (Peoples’ Friendship University of Russia)MoscowRussia
  2. 2.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubna, Moscow RegionRussia
  3. 3.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow RegionRussia
  4. 4.Department of Theoretical PhysicsSAS, Institute of Experimental PhysicsKošiceSlovakia
  5. 5.Faculty of SciencePavol Jozef Šafárik University in Košice (UPJŠ)KošiceSlovakia

Personalised recommendations