This paper is part of a project that aims at modelling wave propagation in random media by means of Fourier integral operators. A partial aspect is addressed here, namely explicit models of stochastic, highly irregular transport speeds in one-dimensional transport, which will form the basis for more complex models. Starting from the concept of a Goupillaud medium (a layered medium in which the layer thickness is proportional to the propagation speed), a class of stochastic assumptions and limiting procedures leads to characteristic curves that are Lévy processes. Solutions corresponding to discretely layered media are shown to converge to limits as the time step goes to zero (almost surely pointwise almost everywhere). This translates into limits in the Fourier integral operator representations.
Keywords
- Characteristic Curve
- Propagation Speed
- Layered Medium
- Characteristic Curf
- Random Medium
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.