Skip to main content

GEODIM: A Semantic Model-Based System for 3D Recognition of Industrial Scenes

  • Chapter
  • First Online:
Current Trends on Knowledge-Based Systems

Abstract

Keeping an inventory of the facilities within a factory implies high costs in terms of time, effort, and knowledge, since it demands the detailed, orderly, and valued description of the items within the plant. One way to accomplish this task within scanned industrial scenes is through the combination of an object recognition algorithm with semantic technology. This research therefore introduces GEODIM, a semantic model-based system for recognition of 3D scenes of indoor spaces in factories. The system relies on the two aforementioned technologies to describe industrial digital scenes with logical, physical, and semantic information. GEODIM extends the functionality of traditional object recognition algorithms by incorporating semantics in order to identify and characterize recognized geometric primitives along with rules for the composition of real objects. This research also describes a real case where GEODIM processes were applied and presents its qualitative evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hofer, M., Odehnal, B., Pottmann, H., Steiner, T., Wallner, J.: 3D shape recognition and reconstruction based on line element geometry. Proc. IEEE Int. Conf. Comput. Vis. II, 1532–1538 (2005)

    Article  Google Scholar 

  2. Bhuyan, M., Neog, D., Kar, M.: Hand pose recognition using geometric features. In: Communications (NCC), 2011, pp. 0–4 (2011)

    Google Scholar 

  3. El-Sayed, M., Radwan, E., Zubair, A.: Abductive neural network modeling for hand recognition using geometric features. In: Neural Information Processing, pp. 593–602 (2012)

    Google Scholar 

  4. Pasqualotto, G., Zanuttigh, P., Cortelazzo, G.M.: Combining color and shape descriptors for 3D model retrieval. Signal Process. Image Commun. 28(6), 608–623 (2013)

    Article  Google Scholar 

  5. Soysal, M., Alatan, A.A.: Joint utilization of local appearance and geometric invariants for 3D object recognition. Multimed. Tools Appl. 74(8), 2611–2637 (2013)

    Article  Google Scholar 

  6. Hejrati, M., Ramanan, D.: Analysis by synthesis: 3D object recognition by object reconstruction. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2449–2456 (2014)

    Google Scholar 

  7. Majumder, A., Behera, L., Subramanian, V.K.: Emotion recognition from geometric facial features using self-organizing map. Pattern Recogn. 47(3), 1282–1293 (2014)

    Article  Google Scholar 

  8. Junyan, L., Qingju, T., Yang, W., Yumei, L., Zhiping, Z.: Defects’ geometric feature recognition based on infrared image edge detection. Infrared Phys. Technol. 67, 387–390 (2014)

    Article  Google Scholar 

  9. Ruiz-Sarmiento, J.-R., Galindo, C., Gonzalez-Jimenez, J.: Scene object recognition for mobile robots through Semantic Knowledge and Probabilistic Graphical Models. Expert Syst. Appl. 42(22), 8805–8816 (2015)

    Article  Google Scholar 

  10. Nasr, E.S.A., Khan, A.A., Alahmari, A.M., Hussein, H.M.A.: A feature recognition system using geometric reasoning. Procedia CIRP 18, 238–243 (2014)

    Article  Google Scholar 

  11. Gaither, N., Frazier, G.: Administración de producción y operaciones (2000)

    Google Scholar 

  12. Leifman, G., Meir, R., Tal, A.: Semantic-oriented 3d shape retrieval using relevance feedback. Vis. Comput. (2005)

    Google Scholar 

  13. Hois, J., Wünstel, M., Bateman, J., Röfer, T.: Dialog-based 3D-image recognition using a domain ontology. In: Spatial Cognition V Reasoning, Action, Interaction (2007)

    Google Scholar 

  14. Golovinskiy, A., Kim, V.G., Funkhouser, T.: Shape-based recognition of 3D point clouds in urban environments. In: 2009 IEEE 12th International Conference on Computer Vision, no. ICCV, pp. 2154–2161 (2009)

    Google Scholar 

  15. Rusu, R., Blodow, N.: Close-range scene segmentation and reconstruction of 3D point cloud maps for mobile manipulation in domestic environments. In: Intelligent Robots and Systems (2009)

    Google Scholar 

  16. Günther, M., Wiemann, T.: Model-based object recognition from 3d laser data. In: KI 2011 Advances in Artificial Intelligence (2011)

    Google Scholar 

  17. Wu, Y., Liu, Y., Yuan, Z., Zheng, N.: IAIR-CarPed: a psychophysically annotated dataset with fine-grained and layered semantic labels for object recognition. Pattern Recognit. Lett. 33(2), 218–226 (2012)

    Article  Google Scholar 

  18. Hmida, H., Cruz, C., Boochs, F., Nicolle, C.: Knowledge base approach for 3d objects detection in point clouds using 3d processing and specialists knowledge. arXiv Prepr. arXiv1301.4991 (2013)

    Google Scholar 

  19. Yang, L., Xie X.: Exploiting object semantic cues for Multi-label Material Recognition. Neurocomputing 173, 1646–1654 (2015)

    Google Scholar 

  20. Sheng, W., Du, J., Cheng, Q., Li, G., Zhu, C., Liu, M., Xu, G.: Robot semantic mapping through human activity recognition: a wearable sensing and computing approach. Robot. Auton. Syst. 68, 47–58 (2015)

    Article  Google Scholar 

  21. Park, S.-J., Hong, K.-S.: Recovering an indoor 3D layout with top-down semantic segmentation from a single image. Pattern Recognit. Lett. 68, 70–75 (2015)

    Article  Google Scholar 

  22. Attene, M., Patane, G.: Hierarchical structure recovery of point-sampled surfaces. Comput. Graph. Forum 29(6), 1905–1920 (2010)

    Article  Google Scholar 

  23. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. (2006)

    Google Scholar 

  24. Mountrakis, G., Im, J., Ogole, C.: Support vector machines in remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 66, 247–259 (2011)

    Google Scholar 

  25. Liu, L., Zsu, M.: Encyclopedia of Database Systems (2009)

    Google Scholar 

  26. Zlatanova, S., Rahman, A.A., Shi, W.: Topological models and frameworks for 3D spatial objects. Comput. Geosci. 30(4), 419–428 (2004)

    Article  Google Scholar 

  27. Moratz, R., Nebel, B., Freksa, C.: Qualitative spatial reasoning about relative position. In: Spatial Cognition III (2003)

    Google Scholar 

  28. Moratz, R., Tenbrink, T., Bateman, J., Fischer, K.: Spatial knowledge representation for human-robot interaction. In: Spatial Cognition III (2003)

    Google Scholar 

  29. Méndez, V., Rosell-Polo, J., Sanz, R.: Deciduous tree reconstruction algorithm based on cylinder fitting from mobile terrestrial laser scanned point clouds. Biosyst. Eng. 124, 78–88 (2014)

    Google Scholar 

  30. Levinson, S.: Frames of reference and Molyneux’s question: crosslinguistic evidence. Lang. Space (1996)

    Google Scholar 

  31. Li, H., Liu, Z., Huang, Y., Shi, Y.: Quaternion generic Fourier descriptor for color object recognition. Pattern Recognit. 48(12), 3895–3903 (2015)

    Article  Google Scholar 

  32. Hong, C., Yu, J., You, J., Chen, X., Tao, D.: Multi-view ensemble manifold regularization for 3D object recognition. Inf. Sci. 320, 395–405 (2015)

    Article  MathSciNet  Google Scholar 

  33. Rubio, J.C., Eigenstetter, A., Ommer, B.: Generative regularization with latent topics for discriminative object recognition. Pattern Recognit. 48(12), 3871–3880 (2015)

    Article  Google Scholar 

  34. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22, 181–193 (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Council of Science and Technology of Mexico (CONACYT) and the Public Education Secretary (SEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliana Perez-Gallardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Perez-Gallardo, Y., Cuadrado, J.L.L., Crespo, Á.G., de Jesús, C.G. (2017). GEODIM: A Semantic Model-Based System for 3D Recognition of Industrial Scenes. In: Alor-Hernández, G., Valencia-García, R. (eds) Current Trends on Knowledge-Based Systems. Intelligent Systems Reference Library, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-319-51905-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51905-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51904-3

  • Online ISBN: 978-3-319-51905-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics