Advertisement

Si(100):H and Ge(100):H Dimer Rows Contrast Inversion in Low-temperature Scanning Tunneling Microscope Images

  • Hiroyo Kawai
  • Tiong Leh Yap
  • Olga Neucheva
  • Marek Kolmer
  • Marek Szymoński
  • Cedric Troadec
  • Mark Saeys
  • Christian JoachimEmail author
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

Detailed low-temperature scanning tunneling microscope images of the Si(100)-2×1-H and the Ge(100)-2×1-H surfaces show a remarkable contrast inversion between filled- and empty-state images where the hydrogen dimer rows appear bright for filled-state images and dark for empty-state images. This contrast inversion originates from the change in the dominant surface states and their coupling to the tip apex and the bulk channels as a function of the bias voltage.

Keywords

Bias Voltage Negative Bias Voltage Positive Bias Voltage Small Positive Bias Contrast Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge the Agency of Science, Technology, and Research (A*STAR) for funding provided through the Visiting Investigatorship Programme Atom Technology project 1021100972, and through the AtMol integrated project contract number 270028 from the European Commission. We also acknowledge the A*STAR Computational Resource Centre (A*CRC) for computational resources and support. MK acknowledges financial support received from the Foundation for Polish Science (FNP).

References

  1. 1.
    Joachim, C., Martrou, D., Rezeq, M., Troadec, C., Deng, J., Chandrasekhar, N., Gauthier, S.: Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates. J. Phys. Condens. Matter 22, 084025 (2010). doi: 10.1088/0953-8984/22/8/084025 CrossRefGoogle Scholar
  2. 2.
    Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., Simmons, M.Y.: A single-atom transistor. Nat. Nanotechnol. 7, 242 (2012). doi: 10.1038/nnano.2012.21 CrossRefGoogle Scholar
  3. 3.
    Piva, P.G., DiLabio, G.A., Pitters, J.L., Zikovsky, J., Rezeq, M., Dogel, S., Hofer, W.A., Wolkow, R.A.: Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658 (2005). doi: 10.1038/nature03563 CrossRefGoogle Scholar
  4. 4.
    Hersam, M.C., Guisinger, N.P., Lyding, J.W., Thompson, D.S., Moore, J.S.: Atomic-level study of the robustness of the Si(100)-2×1: H surface following exposure to ambient conditions. App. Phys. Lett. 78, 886 (2001). doi: 10.1063/1.1348322 CrossRefGoogle Scholar
  5. 5.
    Boland, J.J.: Scanning tunneling microscopy of the interaction of hydrogen with silicon surfaces. Adv. Phys. 42, 129 (1993). doi: 10.1080/00018739300101474 CrossRefGoogle Scholar
  6. 6.
    Bellec, A., Riedel, D., Dujardin, G., Boudrioua, O., Chaput, L., Stauffer, L., Sonnet, P.: Electronic properties of the n-doped hydrogenated silicon (100) surface and dehydrogenated structures at 5 K. Phys. Rev. B 80, 245434 (2009). doi: 10.1103/PhysRevB.80.245434 CrossRefGoogle Scholar
  7. 7.
    Buehler, E.J., Boland, J.J.: Dimer preparation that mimics the transition state for the adsorption of H2 on the Si(100)-2×1 surface. Science 290, 506 (2000). doi: 10.1126/science.290.5491.506 CrossRefGoogle Scholar
  8. 8.
    Bellec, A., Riedel, D., Dujardin, G., Rompotis, N., Kantorovich, L.N.: Dihydride dimer structures on the Si(100): H surface studied by low-temperature scanning tunneling microscopy. Phys. Rev. B 78, 165032 (2008). doi: 10.1103/PhysRevB.78.165302 CrossRefGoogle Scholar
  9. 9.
    Labidi, H., Kantorovich, L., Riedel, D.: Atomic-scale control of hydrogen bonding on a bare Si(100)-2×1 surface. Phys. Rev. B 86, 165441 (2012). doi: 10.1103/PhysRevB.86.165441 CrossRefGoogle Scholar
  10. 10.
    Kolmer, M., Godlewski, S., Kawai, H., Such, B., Krok, F., Saeys, M., Joachim, C., Szymonski, M.: Electronic properties of STM-constructed dangling-bond dimer lines on a Ge(001)-(2×1):H surface. Phys. Rev. B. 86, 215307 (2012). doi: 10.1103/PhysRevB.86.125307 CrossRefGoogle Scholar
  11. 11.
    Haider, M.B., Pitters, J.L., DiLabio, G.A., Livadaru, L., Mutus, J.Y., Wolkow, R.A.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009). doi: 10.1103/PhysRevLett.102.046805 CrossRefGoogle Scholar
  12. 12.
    Schofield, S.R., Studer, P., Hirjibehedin, C.F., Curson, N.J., Aeppli, G., Bowler, D.R.: Quantum engineering at the silicon surface using dangling bonds. Nat. Commun. 4, 1649 (2013). doi: 10.1038/ncomms2679 CrossRefGoogle Scholar
  13. 13.
    Kawai, H., Ample, F., Wang, Q., Yeo, Y.K., Saeys, M., Joachim, C.: Dangling-bond logic gates on a Si(100)-(2×1)-H surface. J. Phys. Condens. Matter 24, 095011 (2012). doi: 10.1088/0953-8984/24/9/095011 CrossRefGoogle Scholar
  14. 14.
    Ample, F., Duchemin, I., Hliwa, M., Joachim, C.: Single OR molecule and OR atomic circuit logic gates interconnected on a Si(100)H surface. J. Phys. Condens. Matter 23, 125303 (2011). doi: 10.1088/0953-8984/23/12/125303 CrossRefGoogle Scholar
  15. 15.
    Neucheva, O.A., Thamankar, R.M., Yap, T.L., Troadec, C., Deng, J., Joachim, C.: Atomic scale interconnection machine. In: Joachim, C., (ed.) Atomic Scale Interconnection Machines, Advances in Atom and Single Molecule Machines, pp. 23–33. Springer, Heidelberg. doi: 10.1007/978-3-642-28172-3_3 (2012)
  16. 16.
    Cerda, J., Hove, M.A.V., Sautet, P., Salmeron, M.: Efficient method for the simulation of STM images. I. Generalized green-function formalism. Phys. Rev. B 56, 15885 (1997). doi: 10.1103/PhysRevB.56.15885 CrossRefGoogle Scholar
  17. 17.
    Kienle, D., Bevan, K.H., Liang, G.-C., Siddiqui, L., Cerda, J.I., Ghosh, A.W.: Extended Hückel Theory for band structure, chemistry, and transport II. Silicon. J. Appl. Phys. 100, 043715 (2006). doi: 10.1063/1.2259820 CrossRefGoogle Scholar
  18. 18.
    Moussa, J.E., Schultz, P.A., Chelikowsky, J.R.: Analysis of the Heyd-Scuseria-Ernzerhof density functional parameter space. J. Chem. Phys. 136, 204117 (2012). doi: 10.1063/1.4722993 CrossRefGoogle Scholar
  19. 19.
    Kolmer, M., Godlewski, S., Zuzak, R., Wojtaszek, M., Rauer, C., Thuaire, A., Hartmann, J.-M., Moriceau, H., Joachim, C., Szymonski, M.: Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(001) wafers processed and nanopackaged in a clean room environment. Appl. Surf. Sci. 288, 83 (2014). doi: 10.1016/j.apsusc.2013.09.124 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hiroyo Kawai
    • 1
  • Tiong Leh Yap
    • 1
    • 2
    • 3
  • Olga Neucheva
    • 1
  • Marek Kolmer
    • 4
  • Marek Szymoński
    • 4
  • Cedric Troadec
    • 1
  • Mark Saeys
    • 5
  • Christian Joachim
    • 6
    • 7
    Email author
  1. 1.Institute of Materials Research and EngineeringSingaporeSingapore
  2. 2.GLOBALFOUNDRIES Singapore Pte Ltd.SingaporeSingapore
  3. 3.Department of PhysicsNational University of SingaporeSingaporeSingapore
  4. 4.Faculty of Physics, Astronomy and Applied Computer Science, Center for Nanometer-Scale Science and Advanced Materials, NANOSAMJagiellonian UniversityKrakowPoland
  5. 5.Laboratory for Chemical TechnologyGhent UniversityGhentBelgium
  6. 6.GNS & MANA SatelliteCEMES-CNRSToulouse CedexFrance
  7. 7.International Center for Materials Nanoarchitectronics (WPI-MANA)National Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations