Advertisement

Atomic Wires on Ge(001):H Surface

  • Marek KolmerEmail author
  • Jakub Lis
  • Marek Szymoński
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

The drive toward miniaturization of electronic devices motivates investigations of atomic structures at semiconductor surfaces. In this chapter, we describe a full protocol of formation of atomic wires on Ge(001):H-(2×1) surface. The wires are composed of bare germanium dimers possessing dangling bonds, which introduce electronic states within the Ge(001):H surface band gap. With a view to the possible applications, we present detailed analysis of the electronic properties of short DB dimer lines and discuss strong electron–phonon coupling observed in STM experiments on single DB dimers. For longer DB dimer wires, this coupling is attenuated making their usage in future nanoelectronic devices feasible.

Keywords

Scanning Tunneling Microscopy Black Resonance Scanning Tunneling Microscopy Image Conduction Band Edge Dangle Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge European Union Collaborative ICT Projects: “Atomic Scale and Single Molecule Logic Gate Technologies” (ATMOL, contract no. 270028) and “Planar Atomic and Molecular Scale devices” (PAMS, contract no. 610446). MK acknowledges financial support received from the Foundation for Polish Science (FNP).

References

  1. 1.
    Prauzner-Bechcicki, J.S., Godlewski, S., Szymonski, M.: Atomic- and molecular-scale devices and systems for single-molecule electronics. Physica Status Solidi (a) 209(4), 603–613 (2012)CrossRefGoogle Scholar
  2. 2.
    Kolmer, M., et al.: Electronic properties of STM-constructed dangling-bond dimer lines on a Ge(001)-(2x1):H surface. Phys. Rev. B 86(12), 125307 (2012)CrossRefGoogle Scholar
  3. 3.
    Kolmer, M., et al.: Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(001) wafers processed and nanopackaged in a clean room environment. Appl. Surf. Sci. 288, 83–89 (2014)CrossRefGoogle Scholar
  4. 4.
    Kolmer, M., et al.: Realization of a quantum Hamiltonian Boolean logic gate on the Si(001): H surface. Nanoscale 7(29), 12325–12330 (2015)CrossRefGoogle Scholar
  5. 5.
    Kepenekian, M., et al.: Surface-state engineering for interconnects on H-passivated Si(100). Nano Lett. 13(3), 1192–1195 (2013)CrossRefGoogle Scholar
  6. 6.
    Godlewski, S., et al.: Dynamical behavior of a dangling bond dimer on a hydrogenated semiconductor: Ge(001):H. Phys. Rev. B 92(11), 115403 (2015)Google Scholar
  7. 7.
    Engelund, M., et al.: The butterfly—a well-defined constant-current topography pattern on Si(001):H and Ge(001):H resulting From current-induced defect fluctuation. Phys. Chem. Chem. Phys. 18, 19309–19017 (2016)Google Scholar
  8. 8.
    Yang, J.S., et al.: Imaging, single atom contact and single atom manipulations at low temperature using the new ScientaOmicron LT-UHV-4 STM. Eur. Phys. J. Appl. Phys. 73(1), 10702 (2016)Google Scholar
  9. 9.
    Hummer, K., Harl, J., Kresse, G.: Heyd-Scuseria-Ernzerhof hybrid functional for calculating the lattice dynamics of semiconductors. Phys. Rev. B 80(11), 115205 (2009)Google Scholar
  10. 10.
    Radny, M.W., et al.: Valence surface electronic states on Ge(001): reply. Phys. Rev. Lett. 103(18), 189702 (2009)CrossRefGoogle Scholar
  11. 11.
    Kamiyama, E., Sueoka, K., Vanhellemont, J.: Surface-induced charge at a Ge (100) dimer surface and its interaction with vacancies and self-interstitials. J. Appl. Phys. 113(9), 093503 (2013)Google Scholar
  12. 12.
    Zandvliet, H.J.W.: The Ge(001) surface. Physics Reports-Review Section of Physics Letters 388(1), 1–40 (2003)Google Scholar
  13. 13.
    Mönch, W.: Semiconductor Surfaces and Interfaces. Springer, Berlin (2001)Google Scholar
  14. 14.
    Takagi, Y., et al.: Rewritable nanopattern on a Ge(001) surface utilizing p(2x2)-to-c(4x2) transition of surface reconstruction induced by a scanning tunneling microscope. Appl. Phys. Lett. 84(11), 1925–1927 (2004)CrossRefGoogle Scholar
  15. 15.
    Seo, H.S., et al.: Critical differences in the surface electronic structure of Ge(001) and Si(001): Ab initio theory and angle-resolved photoemission spectroscopy. Phys. Rev. B 89(11) (2014)Google Scholar
  16. 16.
    Nakatsuji, K., et al.: Electronic states of the clean Ge(001) surface near Fermi energy. Phys. Rev. B 72(24), 241308 (2005)CrossRefGoogle Scholar
  17. 17.
    Sagisaka, K., Fujita, D.: Standing waves on Si(100) and Ge(100) surfaces observed by scanning tunneling microscopy. Phys. Rev. B 72(23), 235327 (2005)CrossRefGoogle Scholar
  18. 18.
    Landemark, E., et al.: Electronic-structure of clean and hydrogen-chemisorbed Ge(001) surfaces studied by photoelectron-spectroscopy. Phys. Rev. B 49(23), 16523–16533 (1994)CrossRefGoogle Scholar
  19. 19.
    Jeon, C., et al.: Evidence from ARPES that the Ge(001) surface is semiconducting at room temperature. Phys. Rev. B 74(12), 125407 (2006)Google Scholar
  20. 20.
    Zandvliet, H.J.W., Vansilfhout, A., Sparnaay, M.J.: Metallic properties of the Ge(001) surface. Phys. Rev. B 39(8), 5576–5578 (1989)CrossRefGoogle Scholar
  21. 21.
    Wojtaszek, M., et al.: Fermi level pinning at the Ge(001) surface—a case for non-standard explanation. J. Appl. Phys. 118(18), 185703 (2015)CrossRefGoogle Scholar
  22. 22.
    Wojtaszek, M., et al.: Inversion layer on the Ge(001) surface from the four-probe conductance measurements. Appl. Phys. Lett. 105(4), 042111 (2014)Google Scholar
  23. 23.
    Repp, J., Liljeroth, P., Meyer, G.: Coherent electron-nuclear coupling in oligothiophene molecular wires. Nat. Phys. 6(12), 975–979 (2010)CrossRefGoogle Scholar
  24. 24.
    Wingreen, N.S., Jacobsen, K.W., Wilkins, J.W.: Inelastic-scattering in resonant tunneling. Phys. Rev. B 40(17), 11834–11850 (1989)CrossRefGoogle Scholar
  25. 25.
    Jonson, M.: Quantum-mechanical resonant tunneling in the presence of a Boson field. Phys. Rev. B 39(9), 5924–5933 (1989)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Physics Astronomy and Applied Computer Science, Centre for Nanometer-Scale Science and Advanced Materials, NANOSAMJagiellonian UniversityKrakowPoland

Personalised recommendations