The Emerging Role of Cardiac Stem Cells in Cardiac Regeneration

Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

The dawn of the new century has witnessed significant advances in our understanding of myocardial regeneration in both physiological and pathophysiological conditions. Several studies have divulged the existence of resident cardiac stem cells (CSCs) in heart that have the capacity to proliferate and mature into precursors which, in turn, develop into mature cardiac cell types. Various populations of CSCs have been reported in the adult mammalian myocardium based on the antigen that has been used for their primary isolation. Although the contribution of these cells in maintaining homeostasis in heart is yet debatable, they have been widely explored for their therapeutic efficacy in several experimental models of myocardial injury. A few clinical trials have also been initiated but with little success. CSC therapy is a potent and promising approach for cardiac therapy, however, their efficacy is limited owing to the reduced numbers and survival of the transplanted cells in the infarcted tissue. Several strategies are being explored to enhance the numbers, survival, retention and engraftment of CSCs in the host tissues. In the current chapter, we discuss the basic biology of CSCs, their role in cardiac physiology and pathophysiology and their therapeutic use in experimental and clinical studies. The chapter also deliberates about major constraints in their use and describes approaches that are presently being employed for their activation and expansion, both in vitro and in vivo. In the end, we also give an account of other cells, especially bone marrow-derived cells that are used for cardiac regeneration and how these cells fall in comparison to CSCs.

Keywords

Myocardial infarction Cardiac stem cells (CSCs) cKit Cardiomyocytes Stem cells 

References

  1. 1.
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.CrossRefPubMedGoogle Scholar
  2. 2.
    Hosoda T, D'Amario D, Cabral-Da-Silva MC, Zheng H, Padin-Iruegas ME, Ogorek B, et al. Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci U S A. 2009;106:17169–74.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Linke A, Müller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A. 2005;102:8966–71.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, Kesteven SH, Holman SR, et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell. 2014;157:795–807.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Leri A, Rota M, Hosoda T, Goichberg P, Anversa P. Cardiac stem cell niches. Stem Cell Res. 2014;631-646.Google Scholar
  6. 6.
    Ferreira-Martins J, Ogórek B, Cappetta D, Matsuda A, Signore S, D'Amario, et al. Cardiomyogenesis in the developing heart is regulated by c-kit-positive cardiac stem cells. Circ Res. 2012;110:701–15.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fazel S, Cimini M, Chen L, Li S, Angoulvant D, Fedak P, et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest. 2006;116:1865–77.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chan SS-K, Shueh Y-Z, Liu Y-W, Hsieh PCH. Harnessing endogenous intra- and extra-cardiac stem cells for cardiac regeneration—hope or hype? Drug Discov Today Ther Strateg. 2009;6:127–33.CrossRefGoogle Scholar
  9. 9.
    Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 2013;154:827–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A. 2003;100:12313–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem. 2004;279:11384–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265:262–75.CrossRefPubMedGoogle Scholar
  13. 13.
    Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127:1151–65.CrossRefPubMedGoogle Scholar
  14. 14.
    Pandur P, Sirbu IO, Kühl SJ, Philipp M, Kühl M. Islet1-expressing cardiac progenitor cells: a comparison across species. Dev Genes Evol. 2013;223:117–29.CrossRefPubMedGoogle Scholar
  15. 15.
    Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–21.CrossRefPubMedGoogle Scholar
  16. 16.
    Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115:896–908.CrossRefPubMedGoogle Scholar
  17. 17.
    Wessels A, Pérez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004;276:43–57.CrossRefPubMedGoogle Scholar
  18. 18.
    Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell. 2011;9:527–40.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Anversa P, Kajstura J, Leri A, Bolli R. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation. 2006;113:1451–63.CrossRefPubMedGoogle Scholar
  20. 20.
    Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13:970–4.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chan SS, Shueh YZ, Bustamante N, Tsai SJ, Wu HL, Chen JH, et al. Genetic fate-mapping for studying adult cardiomyocyte replenishment after myocardial injury. Meth Mol Biol. 2010;660:201–11.CrossRefGoogle Scholar
  22. 22.
    Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, et al. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med. 2013;5:191–209.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Uchida S, De Gaspari P, Kostin S, Jenniches K, Kilic A, Izumiya Y, et al. Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Rep. 2013;1:397–410.CrossRefGoogle Scholar
  24. 24.
    Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493:433–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Ali SR, Hippenmeyer S, Saadat LV, Luo L, Weissman IL, Ardehali R. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci U S A. 2014;111:8850–5.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SC, et al. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509:337–41.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci U S A. 2005;102:3766–71.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, et al. Human cardiac stem cells. Proc Natl Acad Sci U S A. 2007;104:14068–73.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation. 2010;121:293–305.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bolli R, Tang XL, Sanganalmath SK, Rimoldi O, Mosna F, Abdel-Latif A, et al. Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation. 2013;128:122–31.CrossRefPubMedGoogle Scholar
  31. 31.
    Welt FG, Gallegos R, Connell J, Kajstura J, D'Amario D, Kwong RY, et al. Effect of cardiac stem cells on left-ventricular remodeling in a canine model of chronic myocardial infarction. Circ Heart Fail. 2013;6:99–106.CrossRefPubMedGoogle Scholar
  32. 32.
    Lee ST, White AJ, Matsushita S, Malliaras K, Steenbergen C, Zhang Y, et al. intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol. 2011;57:455–65.CrossRefPubMedGoogle Scholar
  33. 33.
    Suzuki G, Weil BR, Leiker MM, Ribbeck AE, Young RF, Cimato TR, et al. Global intracoronary infusion of allogeneic cardiosphere-derived cells improves ventricular function and stimulates endogenous myocyte regeneration throughout the heart in swine with hibernating myocardium. PLoS One. 2014;9:e113009.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–57.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014;63:10–22.CrossRefGoogle Scholar
  36. 36.
    Kapelios CJ, Nanas JN, Malliaras K. Allogeneic cardiosphere-derived cells for myocardial regeneration: current progress and recent results. Future Cardiol. 2016;12:87–100.CrossRefPubMedGoogle Scholar
  37. 37.
    Yacoub MH and Terrovitis J. CADUCEUS, SCIPIO, ALCADIA: cell therapy trials using cardiac-derived cells for patients with post myocardial infarction LV dysfunction, still evolving. Glob Cardiol Sci Pract 2013:5-8Google Scholar
  38. 38.
    Goumans MJ, de Boer TP, Smits AM, van Laake LW, van Vliet P, Metz CH, et al. TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res. 2007;1:138–49.CrossRefPubMedGoogle Scholar
  39. 39.
    Tang YL, Shen L, Qian K, Phillips MI. A novel two-step procedure to expand cardiac Sca-1+ cells clonally. Biochem Biophys Res Commun. 2007;359:877–83.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Aghila Rani KG, Kartha CC. Effects of epidermal growth factor on proliferation and migration of cardiosphere-derived cells expanded from adult human heart. Growth Factors. 2010;28:157–65.CrossRefPubMedGoogle Scholar
  41. 41.
    Windmolders S, De Boeck A, Koninckx R, Daniëls A, De Wever O, Bracke M, et al. Mesenchymal stem cell secreted platelet derived growth factor exerts a pro-migratory effect on resident cardiac atrial appendage stem cells. J Mol Cell Cardiol. 2014;66:177–88.CrossRefPubMedGoogle Scholar
  42. 42.
    Kawaguchi N, Smith AJ, Waring CD, Hasan MK, Miyamoto S, Matsuoka R, et al. c-kitpos GATA-4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling. PLoS One. 2010;5:e14297.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Al-Lamki RS, Lu W, Wang J, Yang J, Sargeant TJ, Wells R, et al. TNF, acting through inducibly expressed TNFR2, drives activation and cell cycle entry of c-kit+ cardiac stem cells in ischemic heart disease. Stem Cells. 2013;31:1881–92.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bollini S, Riley PR, Smart N. Thymosin β4: multiple functions in protection, repair and regeneration of the mammalian heart. Expert Opin Biol Ther. 2015;15(Suppl 1):163–74.CrossRefGoogle Scholar
  45. 45.
    Tyukavin AI, Belostotskaya GB, Golovanova TA, Galagudza MM, Zakharov EA, Burkova NV, et al. Stimulation of proliferation and differentiation of rat resident myocardial cells with apoptotic bodies of cardiomyocytes. Bull Exp Biol Med. 2015;159:138–41.CrossRefPubMedGoogle Scholar
  46. 46.
    Mohsin S, Khan M, Toko H, Bailey B, Cottage CT, Wallach K, et al. Human cardiac progenitor cells engineered with Pim-1 kinase enhance myocardial repair. J Am Coll Cardiol. 2012;60:1278–87.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cheng K, Blusztajn A, Shen D, Li TS, Sun B, Galang G, et al. Functional performance of human cardiosphere-derived cells delivered in an in situ polymerizable hyaluronan-gelatin hydrogel. Biomaterials. 2012;33:5317–24.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cai C, Teng L, Vu D, He JQ, Guo Y, Li Q, Tang XL, et al. The heme oxygenase 1 inducer (CoPP) protects human cardiac stem cells against apoptosis through activation of the extracellular signal-regulated kinase (ERK)/NRF2 signaling pathway and cytokine release. J Biol Chem. 2012;287:33720–32.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell. Eur Heart J. 2014;35(39):2722–31.CrossRefPubMedGoogle Scholar
  50. 50.
    Ellison GM, Torella D, Dellegrottaglie S, Perez-Martinez C, Perez de Prado A, Vicinanza C, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol. 2011;58:977–86.CrossRefPubMedGoogle Scholar
  51. 51.
    Koudstaal S, Bastings MM, Feyen DA, Waring CD, van Slochteren FJ, Dankers PY, et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J Cardiovasc Transl Res. 2014;7:232–41.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Jackson R, Tilokee EL, Latham N, Mount S, Rafatian G, Strydhorst J, et al. Paracrine engineering of human cardiac stem cells with insulin-like growth factor 1 enhances myocardial repair. J Am Heart Assoc. 2015;4:e002104.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Russell JL, Goetsch SC, Aguilar HR, Frantz DE, Schneider JW. Targeting native adult heart progenitors with cardiogenic small-molecules. ACS Chem Biol. 2012;7:1067–76.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Koh GY, Klug MG, Soonpaa MH, Field LJ. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest. 1993;92:1548–54.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzeźniczak J, Rozwadowska N, et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J. 2004;148(3):531–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Gavira JJ, Herreros J, Perez A, Garcia-Velloso MJ, Barba J, Martin-Herrero F, et al. Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J Thorac Cardiovasc Surg. 2006;131:799–804.CrossRefPubMedGoogle Scholar
  57. 57.
    Li RK, Mickle DA, Weisel RD, Mohabeer MK, Zhang J, Rao V, et al. Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation. 1997;96:179–86.Google Scholar
  58. 58.
    Sakai T, Li RK, Weisel RD, Mickle DA, Jia ZQ, Tomita S, et al. Fetal cell transplantation: a comparison of three cell types. J Thorac Cardiovasc Surg. 1999;118:715–24.CrossRefPubMedGoogle Scholar
  59. 59.
    Min JY, Sullivan MF, Yang Y, Zhang JP, Converso KL, Morgan JP, et al. Significant improvement of heart function by cotransplantation of human mesenchymal stem cells and fetal cardiomyocytes in postinfarcted pigs. Ann Thorac Surg. 2002;74:1568–75.CrossRefPubMedGoogle Scholar
  60. 60.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.CrossRefPubMedGoogle Scholar
  61. 61.
    Balsam LB, Robbins RC. Haematopoietic stem cells and repair of the ischaemic heart. Clin Sci (Lond). 2005;109:483–92.CrossRefGoogle Scholar
  62. 62.
    Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, et al. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation. 2013;127:213–23.CrossRefPubMedGoogle Scholar
  63. 63.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.CrossRefPubMedGoogle Scholar
  64. 64.
    Kalka C, Tehrani H, Laudenberg B, Vale PR, Isner JM, Asahara T, et al. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg. 2000;70:829–34.CrossRefPubMedGoogle Scholar
  65. 65.
    Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. 2001;103:634–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation. 2002;105:732–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Brunt KR, Wu J, Chen Z, Poeckel D, Dercho RA, Melo LG, et al. Ex vivo Akt/HO-1 gene therapy to human endothelial progenitor cells enhances myocardial infarction recovery. Cell Transplant. 2012;21:1443–61.CrossRefPubMedGoogle Scholar
  68. 68.
    Kaur S, Kumar TR, Uruno A, Sugawara A, Jayakumar K, Kartha CC. Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study. Basic Res Cardiol. 2009;104:39–749.CrossRefGoogle Scholar
  69. 69.
    Kaur S, Harikrishnan VS, Radhakrishnan S, Uruno A, Sugawara A, et al. Transfection of endothelial nitric oxide synthase gene improves angiogenic efficacy of endothelial progenitor cells in rabbits with hindlimb ischemia. J Clin Exp Cardiol. 2011;2:140. doi: 10.4172/2155-9880.1000140.CrossRefGoogle Scholar
  70. 70.
    Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Assmus B, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006;355(12):1222–32.CrossRefPubMedGoogle Scholar
  72. 72.
    Clifford DM, Fisher SA, Brunskill SJ, Doree C, Mathur A, Watt S, et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev. 2012;2:Cd006536.Google Scholar
  73. 73.
    Fisher SA, Brunskill SJ, Doree C, Mathur A, Taggart DP, Martin-Rendon E. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev. 2014;4:CD007888.Google Scholar
  74. 74.
    Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, et al. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med. 2000;6:88–95.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002;91:189–201.CrossRefPubMedGoogle Scholar
  76. 76.
    Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015–24.CrossRefPubMedGoogle Scholar
  77. 77.
    Min JY, Huang X, Xiang M, Meissner A, Chen Y, Ke Q, et al. Homing of intravenously infused embryonic stem cell-derived cells to injured hearts after myocardial infarction. J Thorac Cardiovasc Surg. 2006;131:889–97.CrossRefPubMedGoogle Scholar
  78. 78.
    Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol. 2004;22:1282–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Chong JJ, Murry CE. Cardiac regeneration using pluripotent stem cells—progression to large animal models. Stem Cell Res. 2014;13:654–65.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS, Nguemo F, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation. 2008;118:507–17.CrossRefPubMedGoogle Scholar
  81. 81.
    Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation. 2008;118:498–506.CrossRefPubMedGoogle Scholar
  82. 82.
    Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation. 2012;126:S29–37.CrossRefPubMedGoogle Scholar
  83. 83.
    Miki K, Uenaka H, Saito A, Miyagawa S, Sakaguchi T, Higuchi T, et al. Bioengineered myocardium derived from induced pluripotent stem cells improves cardiac function and attenuates cardiac remodeling following chronic myocardial infarction in rats. Stem Cells Transl Med. 2012;1:430–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of BiotechnologyGautam Buddha UniversityGreater NoidaIndia
  2. 2.Division of Cardiovascular Diseases and Diabetes BiologyRajiv Gandhi Center for BiotechnologyKeralaIndia

Personalised recommendations