Uterine Stem Cells and Their Future Therapeutic Potential in Regenerative Medicine

Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Recent studies have identified the presence of multipotent stem cell populations in the endometrium. These cells, termed as endometrial stem cells (EnSC), are readily available source of regenerating cells that comprise of a population of epithelial stem cells, mesenchymal stem cells, side population stem cells and endometrial regenerative cells. EnSC research has grown rapidly over the last decade with promising therapeutic applications. Increasing evidences suggest their immense potential in cell-based therapies. The ease in harvesting and maintenance of EnSCs in culture for many generations gives them an advantage over existing sources of adult stem cells. Therapeutic application of EnSCs has been promising in several diseases and/or degenerative conditions such as myocardial infarction, stroke, parkinson’s disease, bone regeneration etc. Their role was also explored in tissue engineering applications. EnSCs are effective immunomodulators and their anti-inflammatory and angiogenic properties provide therapeutic benefits in transplantation therapies. The role of EnSCs in targeting glioma conditions has also been demonstrated with success in animal models. Although a lot of information has been gained in the field of EnSC research over the past 11 years since its discovery in 2004, several important concerns remain. For example, EnSCs has been linked to the pathogenesis of several gynaecological conditions such as endometriosis, endometrial hyperplasia, endometrial cancer and adenomyosis. This review gives an update on recent advancements in the field of EnSCs with focus on their varied utilities in therapeutic/clinical research.

Keywords

Endometrial stem cells Regenerative medicine Cardiac regeneration Neural regeneration Clinical trials 

References

  1. 1.
    Verdi J, Tan A, Shoae-Hassani A, Seifalian KS. Endometrial stem cells in regenerative medicine. J Biol Eng. 2014;8:20.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update. 2007;13(1):87–101.CrossRefPubMedGoogle Scholar
  3. 3.
    Sourial S, Tempest N, Hapangama DK. Theories on the pathogenesis of endometriosis. Int J Reprod Med. 2014;2014:Article ID 179515.CrossRefGoogle Scholar
  4. 4.
    Uduwela AS, Perera MAK, Li AQ, Fraser IS. Endometrial-myometrial interface: relationship to adenomyosis and changes in pregnancy. Obstet Gynecol Surv. 2000;55:390–400.CrossRefPubMedGoogle Scholar
  5. 5.
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815.CrossRefPubMedGoogle Scholar
  6. 6.
    Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol. 2005;35:1482.CrossRefPubMedGoogle Scholar
  7. 7.
    Morelli SS, Yi P, Goldsmith LT. Endometrial stem cells and reproduction. Obstet Gynecol Int. 2012;2012:851367.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gargett CE, Chan RWS, Schwab KE. Hormone and growth factor signaling in endometrial renewal: role of stem/progenitor cells. Mol Cell Endocrinol. 2008;288:22–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Sasson IE, Taylor HS. Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci. 2008;1127:106–15.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30:42.CrossRefPubMedGoogle Scholar
  11. 11.
    Cervello I, Mas A, Gil-Sanchis C, Peris L, Faus A, Saunders PT, et al. Reconstruction of endometrium from human endometrial side population cell lines. PLoS One. 2011a;6(6):e21221.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cervello I, Mirantes C, Santamaria X, Dolcet X, Matias-Guiu X, Simon C. Stem cells in human endometrium and endometrial carcinoma. Int J Gynecol Pathol. 2011b;30(4):317–27.CrossRefPubMedGoogle Scholar
  13. 13.
    Musina R, Belyavski A, Tarusova O, Solovyova E, Sukhikh G. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med. 2008;145(4):539–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Schwab KE, Chan RW, Gargett CE. Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil Steril. 2005;84:1124–30.CrossRefPubMedGoogle Scholar
  15. 15.
    Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80:1136–45.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kao AP, Wang KH, Chang CC, Lee JN, Long CY, Chen HS, et al. Comparative study of human eutopic and ectopic endometrial mesenchymal stem cells and the development of an in vivo endometriotic invasion model. Fertil Steril. 2011;95:1308–15.CrossRefPubMedGoogle Scholar
  17. 17.
    Koippallil Gopalakrishnan Nair AR, Pandit H, Warty N, Madan T. Endometriotic mesenchymal stem cells exhibit a distinct immune phenotype. Int Immunol. 2015;27:195–204.CrossRefPubMedGoogle Scholar
  18. 18.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.CrossRefPubMedGoogle Scholar
  19. 19.
    Cervello I, Gil-Sanchis C, Mas A, Delgado-Rosas F, Martínez-Conejero JA, Galán A, et al. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One. 2010;5(6):e10964.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Masuda H, Maruyama T, Gargett CE, Miyazaki K, Matsuzaki Y, Okano H, et al. Endometrial side population cells: potential adult stem/progenitor cells in endometrium. Biol Reprod. 2015;93(4):84.CrossRefPubMedGoogle Scholar
  21. 21.
    Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007;5(1):57.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG. Multipotent menstrual blood stromal stem cells: isolation, characterization and differentiation. Cell Transplant. 2008;17(3):303–11.CrossRefPubMedGoogle Scholar
  23. 23.
    Verdi J. Endometrial stem cell differentiation into smooth muscle cell: a novel approach for bladder tissue engineering in women. BJU Int. 2013;112(6):854–63.CrossRefPubMedGoogle Scholar
  24. 24.
    Chan RW, Gargett CE. Identification of label-retaining cells in mouse endometrium. Stem Cells. 2006;24(6):1529–38.Google Scholar
  25. 25.
    Cervelló I, Martínez-Conejero JA, Horcajadas JA, Pellicer A, Simón C. Identification, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Hum Reprod. 2007;22(1):45–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Kaituu-Lino TJ, Ye L, Gargett CE. Re-epithelialization of the uterine surface arises from endometrial glands: evidence from a functional mouse model of breakdown and repair. Endocrinology. 2010;151(7):3386–95.CrossRefGoogle Scholar
  27. 27.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Dimitrov R, Timeva T, Kyurkchiev D, Stamenova M, Shterev A, Kostova P, et al. Characterization of clonogenic stromal cells isolated from human endometrium. Reproduction. 2008;135(4):551–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Schwab K, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22(11):2903–11.CrossRefPubMedGoogle Scholar
  30. 30.
    Ishikawa M, Nakayama K, Yeasmin S, Katagiri A, Iida K, Nakayama N, et al. NAC1, a potential stem cell pluripotency factor expression in normal endometrium, endometrial hyperplasia and endometrial carcinoma. Int J Oncol. 2010;36(5):1097–103.PubMedGoogle Scholar
  31. 31.
    Gil Sanchis C, Cervelló I, Mas A, Faus A, Pellicer A, Simón C. Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) as a putative human endometrial stem cell marker. Mol Hum Reprod. 2013;19(7):407–14.CrossRefPubMedGoogle Scholar
  32. 32.
    Krusche CA, Kroll T, Beier HM, Classen-Linke I. Expression of leucine-rich repeat-containing G-protein-coupled receptors in the human cyclic endometrium. Fertil Steril. 2007;87(6):1428–37.CrossRefPubMedGoogle Scholar
  33. 33.
    Masuda H, Anwar SS, Bühring H-J, Rao JR, Gargett CE. A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant. 2012;21(10):2201–14.CrossRefPubMedGoogle Scholar
  34. 34.
    Han Z, Jing Y, Zhang S, Liu Y, Shi Y, Wei L. The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth. Cell Biosci. 2012;8:2.Google Scholar
  35. 35.
    Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726.CrossRefPubMedGoogle Scholar
  36. 36.
    Carrade DD, Lame MW, Kent MS, Clark KC, Walker NJ, Borjesson DL. Comparative analysis of the immunomodulatory properties of equine adult-derived mesenchymal stem cells. Cell Med. 2012;4:1.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838.CrossRefPubMedGoogle Scholar
  38. 38.
    Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106(5):1755–61.CrossRefPubMedGoogle Scholar
  39. 39.
    Cho NH, Park YK, Kim YT, Yang H, Kim SK. Lifetime expression of stem cell markers in the uterine endometrium. Fertil Steril. 2004;81(2):403–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Gargett CE, Chan RW, Schwab KE. Endometrial stem cells. Curr Opin Obstet Gynecol. 2007;19(4):377–83.CrossRefPubMedGoogle Scholar
  41. 41.
    Hong I-S, Kim S-H, Koong MK, Jun JH, Kim S-H, Lee Y-S, et al. Roles of p38 and c-jun in the differentiation, proliferation and immortalization of normal human endometrial cells. Hum Reprod. 2004;19(10):2192–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Leyendecker G, Wildt L, Mall G. The pathophysiology of endometriosis and adenomyosis: tissue injury and repair. Arch Gynecol Obstet. 2009;280:529–38.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Forte A, Schettino MT, Finicelli M, Cipollaro M, Colacurci N, Cobellis L, et al. Expression pattern of stemness-related genes in human endometrial and endometriotic tissues. Mol Med. 2009;15:392–401.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cui CH, Uyama T, Miyado K, Terai M, Kyo S, Kiyono T, et al. Menstrual blood-derived cells confer human dystrophin expression in the murine model of Duchenne Muscular Dystrophy via cell fusion and myogenic transdifferentiation. Mol Biol Cell. 2007;18:1586–94.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T, et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells. 2008;26(7):1695–704.CrossRefPubMedGoogle Scholar
  46. 46.
    Ebrahimi-Barough S, Norouzi JA, Saberi H, Joghataei MT, Rahbarghazi R, Mirzaei E, et al. Evaluation of motor neuron-like cell differentiation of hEnSCs on biodegradable PLGA nanofiber scaffolds. Mol Neurobiol. 2015;52(3):1704–13.CrossRefPubMedGoogle Scholar
  47. 47.
    Shirian S, Ebrahimi-Barough S, Saberi H, Norouzi-Javidan A, Mousavi SM, Derakhshan MA, et al. Comparison of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly(ε-caprolactone) scaffold. Mol Neurobiol. 2015;53(8):5278–87.CrossRefPubMedGoogle Scholar
  48. 48.
    Navaei-Nigjeh M, Amoabedini G, Noroozi A, Azami M, Asmani MN, Ebrahimi-Barough S, et al. Enhancing neuronal growth from human endometrial stem cells derived neuron-like cells in three-dimensional fibrin gel for nerve tissue engineering. J Biomed Mater Res A. 2014;102(8):2533–43.CrossRefPubMedGoogle Scholar
  49. 49.
    Noureddini M, Verdi J, Mortazavi-Tabatabaei SA, Sharif S, Azimi A, Keyhanvar P, et al. Human endometrial stem cell neurogenesis in response to NGF and bFGF. Cell Biol Int. 2012;36(10):961–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Borlongan CV, Kaneko Y, Maki M, Yu S-J, Ali M, Allickson JG, et al. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev. 2010;19(4):439–52.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther. 2011;19(11):2065–71.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Li HY, Chen YJ, Chen SJ, Kao CL, Tseng LM, Lo WL, et al. Induction of insulin-producing cells derived from endometrial mesenchymal stem-like cells. J Pharmacol Exp Ther. 2010;335(3):817–29.CrossRefPubMedGoogle Scholar
  53. 53.
    Ludke A, Wu J, Nazari M, Hatta K, Shao Z, Li SH, et al. Uterine-derived progenitor cells are immunoprivileged and effectively improve cardiac regeneration when used for cell therapy. J Mol Cell Cardiol. 2015;84:116–28.CrossRefPubMedGoogle Scholar
  54. 54.
    Xaymardan M, Sun Z, Hatta K, Tsukashita M, Konecny F, Weisel RD, et al. Uterine cells are recruited to the infarcted heart and improve cardiac outcomes in female rats. J Mol Cell Cardiol. 2012;52(6):1265–73.CrossRefPubMedGoogle Scholar
  55. 55.
    Peron J, Jazedje T, Brandao W, Perin P, Maluf M, Evangelista L, et al. Human endometrial-derived mesenchymal stem cells suppress inflammation in the central nervous system of EAE mice. Stem Cell Rev. 2012;8(3):940–52.CrossRefPubMedGoogle Scholar
  56. 56.
    Wolff EF, Mutlu L, Massasa EE, Elsworth JD, Eugene Redmond Jr D, Taylor HS. Endometrial stem cell transplantation in MPTP- exposed primates: an alternative cell source for treatment of Parkinson's disease. J Cell Mol Med. 2015;19(1):249–56.CrossRefPubMedGoogle Scholar
  57. 57.
    Jafar A, Saeed H-K, Mohmoud A, Armin A, Naghmeh B, Abodoreza M. Repair of critical size rat calvarial defects using endometrial-derived stem cells embedded within gelatin/apatite nanocomposite scaffold. Biomed Life Sci. 2013;3(1):37–43.Google Scholar
  58. 58.
    Zhong Z, Patel AN, Ichim TE, Riordan NH, Wang H, Min W-P, et al. Feasibility investigation of allogeneic endometrial regenerative cells. J Transl Med. 2009;7(15):29–37.Google Scholar
  59. 59.
    Bockeria L, Bogin V, Bockeria O, Le T, Alekyan B, Woods EJ, et al. Endometrial regenerative cells for treatment of heart failure: a new stem cell enters the clinic. J Transl Med. 2013;11:56.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ichim TE, Solano F, Lara F, Rodriguez JP, Cristea O, Minev B, et al. Combination stem cell therapy for heart failure. Int Arch Med. 2010b;3(1):5.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mori T, Kiyono T, Imabayashi H, Takeda Y, Tsuchiya K, Miyoshi S, et al. Combination of hTERT and bmi-1, E6, or E7 induces prolongation of the life span of bone marrow stromal cells from an elderly donor without affecting their neurogenic potential. Mol Cell Biol. 2005;25:5183–95.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Rodriguez AM, Pisani D, Dechesne CA, Turc-Carel C, Kurzenne JY, Wdziekonski B, et al. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med. 2005;201:1397–405.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164(4):1079–106.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ulrich D, Edwards SL, Su K, Tan KS, White JF, Ramshaw JA, et al. Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair. Tissue Eng Part A. 2014;20:785–98.PubMedGoogle Scholar
  65. 65.
    Shoae Hassani A, Mortazavi Tabatabaei SA, Sharif S, Seifalian AM, Azimi A, et al. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk–collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall. J Tissue Eng Regen Med. 2013;9(11):1268–76.CrossRefPubMedGoogle Scholar
  66. 66.
    Niknamasl A, Ostad SN, Soleimani M, Azami M, Salmani MK, Lotfibakhshaiesh N, et al. A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet beta-cell. Cell Biol Int. 2014;38(10):1174–82.CrossRefPubMedGoogle Scholar
  67. 67.
    Han X, Meng X, Yin Z, Rogers A, Zhong J, Rillema P, et al. Inhibition of intracranial glioma growth by endometrial regenerative cells. Cell Cycle. 2009;8(4):606–10.CrossRefPubMedGoogle Scholar
  68. 68.
    Murphy MP, Wang H, Patel AN, Kambhampati S, Angle N, Chan K, et al. Allogeneic endometrial regenerative cells: an “off the shelf solution” for critical limb ischemia? J Transl Med. 2008;6:45.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ichim TE, Alexandrescu DT, Solano F, Lara F, Campion RDN, Paris E, et al. Mesenchymal stem cells as antiinflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol. 2010a;260(2):75–82.CrossRefPubMedGoogle Scholar
  70. 70.
    Shen CN, Burke ZD, Tosh D. Transdifferentiation, metaplasia and tissue regeneration. Organogenesis. 2004;1(2):36–44.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Innate ImmunityNational Institute for Research in Reproductive Health (ICMR)MumbaiIndia

Personalised recommendations