Skip to main content

Video Hunter at VBS 2017

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10133))

Included in the following conference series:

Abstract

After almost three years of development, the Video Hunter tool (formerly the Signature-Based Video Browser) has become a complex tool combining different query modalities, multi-sketches, visualizations and browsing techniques. In this paper, we present additional improvements of the tool focusing on keyword search. More specifically, we present a method relying on an external image search engine and a method relying on ImageNet labels. We also present a keyframe caching method employed by our tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barthel, K.U., Hezel, N., Mackowiak, R.: Navigating a graph of scenes for exploring large video collections. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 418–423. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27674-8_43

    Chapter  Google Scholar 

  2. Blažek, A., Lokoč, J., Skopal, T.: Video retrieval with feature signature sketches. In: Traina, A.J.M., Traina, C., Cordeiro, R.L.F. (eds.) SISAP 2014. LNCS, vol. 8821, pp. 25–36. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11988-5_3

    Google Scholar 

  3. Cobârzan, C., Schoeffmann, K., Bailer, W., Hürst, W., Blažek, A., Lokoč, J., Vrochidis, S., Barthel, K.U., Rossetto, L.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimedia Tools Appl., 1–33 (2016)

    Google Scholar 

  4. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T., Decaf: a deep convolutional activation feature for generic visual recognition. CoRR, abs/1310.1531 (2013)

    Google Scholar 

  5. Hudelist, M.A., Cobârzan, C., Beecks, C., Werken, R., Kletz, S., Hürst, W., Schoeffmann, K.: Collaborative video search combining video retrieval with human-based visual inspection. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 400–405. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27674-8_40

    Chapter  Google Scholar 

  6. Kuboň, D., Blažek, A., Lokoč, J., Skopal, T.: Multi-sketch semantic video browser. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 406–411. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27674-8_41

    Chapter  Google Scholar 

  7. Lokoč, J., Blažek, A., Skopal, T.: Signature-based video browser. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014. LNCS, vol. 8326, pp. 415–418. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04117-9_49

    Chapter  Google Scholar 

  8. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  9. Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  10. Schoeffmann, K.: A user-centric media retrieval competition: the video browser showdown 2012–2014. IEEE MultiMedia 21(4), 8–13 (2014)

    Article  Google Scholar 

  11. Schoeffmann, K., Hudelist, M.A., Huber, J.: Video interaction tools: a survey of recent work. ACM Comput. Surv. 48(1), 14 (2015)

    Article  Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)

    Google Scholar 

Download references

Acknowledgments

This research was supported by grant SVV-2016-260331 and GAUK project no. 1134316. We would also like to thank Jan Pavlovský for helping us with 2D image maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Blaz̆ek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Blaz̆ek, A., Lokoc̆, J., Kubon̆, D. (2017). Video Hunter at VBS 2017. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science(), vol 10133. Springer, Cham. https://doi.org/10.1007/978-3-319-51814-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51814-5_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51813-8

  • Online ISBN: 978-3-319-51814-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics