Abstract
This paper investigates methods for user and pseudo relevance feedback in video event retrieval. Existing feedback methods achieve strong performance but adjust the ranking based on few individual examples. We propose a relevance feedback algorithm (ARF) derived from the Rocchio method, which is a theoretically founded algorithm in textual retrieval. ARF updates the weights in the ranking function based on the centroids of the relevant and non-relevant examples. Additionally, relevance feedback algorithms are often only evaluated by a single feedback mode (user feedback or pseudo feedback). Hence, a minor contribution of this paper is to evaluate feedback algorithms using a larger number of feedback modes. Our experiments use TRECVID Multimedia Event Detection collections. We show that ARF performs significantly better in terms of Mean Average Precision, robustness, subjective user evaluation, and run time compared to the state-of-the-art.
Keywords
- Information retrieval
- Relevance feedback
- Video search
- Rocchio
- ARF
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Cochran, W.G., Cox, G.M.: Experimental designs (1957)
Crucianu, M., Ferecatu, M., Boujemaa, N.: Relevance feedback for image retrieval: a short survey. Report of the DELOS2 European Network of Excellence (FP6) (2004)
Dalton, J., Allan, J., Mirajkar, P.: Zero-shot video retrieval using content and concepts. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 1857–1860. ACM (2013)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009, pp. 248–255. IEEE (2009)
Deselaers, T., Paredes, R., Vidal, E., Ney, H.: Learning weighted distances for relevance feedback in image retrieval. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)
Gia, G., Roli, F., et al.: Instance-based relevance feedback for image retrieval. In: Advances in Neural Information Processing Systems, pp. 489–496 (2004)
Jiang, L., Meng, D., Mitamura, T., Hauptmann, A.G.: Easy samples first: self-paced reranking for zero-example multimedia search. In: Proceedings of the ACM International Conference on Multimedia, pp. 547–556. ACM (2014)
Jiang, L., Mitamura, T., Yu, S.I., Hauptmann, A.G.: Zero-example event search using multimodal pseudo relevance feedback. In: Proceedings of the International Conference on Multimedia Retrieval, p. 297. ACM (2014)
Jiang, L., Yu, S.I., Meng, D., Mitamura, T., Hauptmann, A.G.: Bridging the ultimate semantic gap: a semantic search engine for internet videos. In: ACM International Conference on Multimedia Retrieval, pp. 27–34 (2015)
Jiang, Y.G., Wu, Z., Wang, J., Xue, X., Chang, S.F.: Exploiting feature and class relationships in video categorization with regularized deep neural networks. arXiv preprint arXiv:1502.07209 (2015)
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Over, P., Awad, G., Michel, M., Fiscus, J., Sanders, G., Kraaij, W., Smeaton, A.F., Quéenot, G., Ordelman, R.: TRECVID 2015 - an overview of the goals, tasks, data, evaluation mechanisms and metrics. In: Proceedings of the TRECVID 2015, p. 52. NIST, USA (2015)
Patil, S.: A comprehensive review of recent relevance feedback techniques in CBIR. Int. J. Eng. Res. Technol. (IJERT) 1(6) (2012)
Rocchio, J.J.: Relevance feedback in information retrieval (1971)
Sakai, T., Manabe, T., Koyama, M.: Flexible pseudo-relevance feedback via selective sampling. ACM Trans. Asian Lang. Inf. Process. (TALIP) 4(2), 111–135 (2005)
Tao, D., Tang, X., Li, X.: Which components are important for interactive image searching? IEEE Trans. Circuits Syst. Video Technol. 18(1), 3–11 (2008)
Tong, S., Chang, E.: Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM International Conference on Multimedia, pp. 107–118. ACM (2001)
Wang, X.Y., Liang, L.L., Li, W.Y., Li, D.M., Yang, H.Y.: A new SVM-based relevance feedback image retrieval using probabilistic feature and weighted kernel function. J. Vis. Commun. Image Represent. 38, 256–275 (2016)
Xu, S., Li, H., Chang, X., Yu, S.I., Du, X., Li, X., Jiang, L., Mao, Z., Lan, Z., Burger, S., et al.: Incremental multimodal query construction for video search. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp. 675–678. ACM (2015)
Yang, L., Hanjalic, A.: Supervised reranking for web image search. In: Proceedings of the International Conference on Multimedia, pp. 183–192. ACM (2010)
Ye, G., Liu, D., Chang, S.F., Saleemi, I., Shah, M., Ng, Y., White, B., Davis, L., Gupta, A., Haritaoglu, I.: BBN VISER TRECVID 2012 multimedia event detection and multimedia event recounting systems
Zhang, H., Lu, Y.J., de Boer, M., ter Haar, F., Qiu, Z., Schutte, K., Kraaij, W., Ngo, C.W.: VIREO-TNO@ TRECVID 2015: multimedia event detection
Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)
Zhou, X.S., Huang, T.S.: Relevance feedback in image retrieval: a comprehensive review. Multimed. Syst. 8(6), 536–544 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Pingen, G.L.J., de Boer, M.H.T., Aly, R.B.N. (2017). Rocchio-Based Relevance Feedback in Video Event Retrieval. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science(), vol 10133. Springer, Cham. https://doi.org/10.1007/978-3-319-51814-5_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-51814-5_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51813-8
Online ISBN: 978-3-319-51814-5
eBook Packages: Computer ScienceComputer Science (R0)