Skip to main content

A Comparative Study for Known Item Visual Search Using Position Color Feature Signatures

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10133))

Included in the following conference series:

  • 1620 Accesses

Abstract

According to the results of the Video Browser Showdown competition, position-color feature signatures proved to be an effective model for visual known-item search tasks in BBC video collections. In this paper, we investigate details of the retrieval model based on feature signatures, given a state-of-the-art known item search tool – Signature-based Video Browser. We also evaluate a preliminary comparative study for three variants of the utilizes distance measures. In the discussion, we analyze logs and provide clues for understanding the performance of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Specifying sketch circle sizes was rather confusing for users. In practice, users were placing multiple circles of the same color to capture large color areas.

  2. 2.

    17 out of 33 participant received a university education in computer science.

References

  1. Barthel, K.U., Hezel, N., Mackowiak, R.: Navigating a graph of scenes for exploring large video collections. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 418–423. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27674-8_43

    Chapter  Google Scholar 

  2. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MATH  Google Scholar 

  3. Blažek, A., Lokoč, J., Matzner, F., Skopal, T.: Enhanced signature-based video browser. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8936, pp. 243–248. Springer, Heidelberg (2015). doi:10.1007/978-3-319-14442-9_22

    Google Scholar 

  4. Blažek, A., Lokoč, J., Skopal, T.: Video retrieval with feature signature sketches. In: Traina, A.J.M., Traina, C., Cordeiro, R.L.F. (eds.) SISAP 2014. LNCS, vol. 8821, pp. 25–36. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11988-5_3

    Google Scholar 

  5. Cobârzan, C., Schoeffmann, K., Bailer, W., Hürst, W., Blažek, A., Lokoč, J., Vrochidis, S., Barthel, K.U., Rossetto, L.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimedia Tools Appl., 1–33 (2016)

    Google Scholar 

  6. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Comput. Surv. 40(2), 5:1–5:60 (2008)

    Article  Google Scholar 

  7. Fabro, M., Böszörmenyi, L.: AAU video browser: non-sequential hierarchical video browsing without content analysis. In: Schoeffmann, K., Merialdo, B., Hauptmann, A.G., Ngo, C.-W., Andreopoulos, Y., Breiteneder, C. (eds.) MMM 2012. LNCS, vol. 7131, pp. 639–641. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27355-1_63

    Chapter  Google Scholar 

  8. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. CoRR abs/1310.1531 (2013)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, Lake Tahoe, Nevada, US, 3–6 December 2012, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  10. Kruliš, M., Lokoč, J., Skopal, T.: Efficient extraction of clustering-based feature signatures using GPU architectures. Multimedia Tools Appl. 75(13), 8071–8103 (2016)

    Article  Google Scholar 

  11. Kuboň, D., Blažek, A., Lokoč, J., Skopal, T.: Multi-sketch semantic video browser. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 406–411. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27674-8_41

    Chapter  Google Scholar 

  12. Le, D.-D., Lam, V., Ngo, T.D., Tran, V.Q., Nguyen, V.H., Duong, D.A., Satoh, S.: NII-UIT-VBS: a video browsing tool for known item search. In: Li, S., Saddik, A., Wang, M., Mei, T., Sebe, N., Yan, S., Hong, R., Gurrin, C. (eds.) MMM 2013. LNCS, vol. 7733, pp. 547–549. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35728-2_65

    Chapter  Google Scholar 

  13. Lokoč, J., Blažek, A., Skopal, T.: Signature-based video browser. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014. LNCS, vol. 8326, pp. 415–418. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04117-9_49

    Chapter  Google Scholar 

  14. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  15. Schoeffmann, K.: A user-centric media retrieval competition: the video browser showdown 2012–2014. IEEE MultiMedia 21(4), 8–13 (2014)

    Article  Google Scholar 

  16. Schoeffmann, K., Hudelist, M.A., Huber, J.: Video interaction tools: a survey of recent work. ACM Comput. Surv. 48(1), 14 (2015)

    Article  Google Scholar 

  17. Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and TRECVid. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, MIR 2006, pp. 321–330. ACM Press, New York (2006)

    Google Scholar 

  18. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015

    Google Scholar 

Download references

Acknowledgments

This research was supported by grant SVV-2016-260331, Charles University project P46 and GAUK project no. 1134316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Lokoč .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lokoč, J., Kuboň, D., Blažek, A. (2017). A Comparative Study for Known Item Visual Search Using Position Color Feature Signatures. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science(), vol 10133. Springer, Cham. https://doi.org/10.1007/978-3-319-51814-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51814-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51813-8

  • Online ISBN: 978-3-319-51814-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics