Skip to main content

Model-Based 3D Scene Reconstruction Using a Moving RGB-D Camera

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10132))

Abstract

This paper presents a scalable model-based approach for 3D scene reconstruction using a moving RGB-D camera. The proposed approach enhances the accuracy of pose estimation due to exploiting the rich information in the multi-channel RGB-D image data. Our approach has lots of advantages on the reconstruction quality of the 3D scene as compared with the conventional approaches using sparse features for pose estimation. The pre-learned image-based 3D model provides multiple templates for sampled views of the model, which are used to estimate the poses of the frames in the input RGB-D video without the need of a priori internal and external camera parameters. Through template-to-frame registration, the reconstructed 3D scene can be loaded in an augmented reality (AR) environment to facilitate displaying, interaction, and rendering of an image-based AR application. Finally, we verify the ability of the established reconstruction system on publicly available benchmark datasets, and compare it with the sate-of-the-art pose estimation algorithms. The results indicate that our approach outperforms the compared methods on the accuracy of pose estimation.

This work was supported in part by Minister of Science and Technology, Taiwan under Grant Numbers MOST 105-2221-E-019-034-MY2 and 105-2218-E-019-001.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wolf, P.R., Dewitt, B.A.: Elements of Photogrammetry: with Applications in GIS. McGraw-Hill, New York (2000)

    Google Scholar 

  2. Ackermann, F.: Airborne laser scanning – present status and further expectations. ISPRS J. Photogramm. Remote Sens. 54, 64–67 (1999)

    Article  Google Scholar 

  3. Davison, A., Reid, I., Molton, N., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  4. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A Comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  5. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multi-view stereo. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  6. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)

    Article  Google Scholar 

  7. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vis. 80, 189–210 (2008)

    Article  Google Scholar 

  8. Vergauwen, M., Van Gool, L.: Web-based 3D reconstruction service. Mach. Vis. Appl. 17(6), 411–426 (2006)

    Article  Google Scholar 

  9. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab, N.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37331-2_42

    Chapter  Google Scholar 

  10. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: International Conference on Robotics and Automation (ICRA), pp. 3748–3754 (2013)

    Google Scholar 

  11. Li, J.N., Wang, L.H., Li, Y., Zhang, J.F., Li, D.X., Zhang, M.: Local optimized and scalable frame-to-model SLAM. Multimed. Tools Appl. 75, 8675–8694 (2016)

    Article  Google Scholar 

  12. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: real-time dense surface mapping and tracking. In: ISMAR (2011)

    Google Scholar 

  13. Tong, J., Zhou, J., Liu, L., Pan, Z., Yan, H.: Scanning 3D full human bodies using kinects. IEEE Trans. Vis. Comput. Graph. 18(4), 643–650 (2012)

    Article  Google Scholar 

  14. Alexiadis, D.S., Zarpalas, D., Daras, P.: Real-time, full 3-D reconstruction of moving foreground objects from multiple consumer depth cameras. IEEE Trans. Multimed. 15(2), 339–358 (2013)

    Article  Google Scholar 

  15. Toldo, R., Beinat, A., Crosilla, F.: Global registration of multiple point clouds embedding the generalized procrustes analysis into an ICP framework. In: Proceedings of 3DPVT Conference, pp. 17–20 (2010)

    Google Scholar 

  16. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers D.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 573–580 (2012)

    Google Scholar 

  17. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4 (2011)

    Google Scholar 

  18. Cheng, S.C., Kuo, C.T., Wu, D.C.: A novel 3D mesh compression using mesh segmentation with multiple principal plane analysis. Pattern Recogn. 43(1), 267–279 (2010)

    Article  MATH  Google Scholar 

  19. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 881–892 (2002)

    Article  MATH  Google Scholar 

  20. Jörg Stückler, J., Behnke, S.: Multi-resolution surfel maps for efficient dense 3D modeling and tracking. J. Vis. Commun. Image Represent. 25(1), 137–147 (2014)

    Article  Google Scholar 

  21. Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Proceedings of Robotics: Science and Systems (RSS) Conference (2009)

    Google Scholar 

  22. Steinbruecker, F., Sturm, J., Cremers, D.: Real-time visual odometry from dense RGB-D images. In: Proceedings of Workshop on Live Dense Reconstruction with Moving Cameras at ICCV, pp. 719–722 (2011)

    Google Scholar 

  23. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Chyi Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cheng, SC., Su, JY., Chen, JM., Hsieh, JW. (2017). Model-Based 3D Scene Reconstruction Using a Moving RGB-D Camera. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science(), vol 10132. Springer, Cham. https://doi.org/10.1007/978-3-319-51811-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51811-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51810-7

  • Online ISBN: 978-3-319-51811-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics