Skip to main content

Stoichiometric Reactivity and Catalytic Applications of Heavier Tetrylene Derivatives

  • Chapter
  • First Online:
  • 451 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Whilst the spotlight has been on the synthesis and reactivity of the heavier alkyne analogues (LEEL, E = Si–Pb) in regards to low-oxidation state group 14 chemistry, the reactivity of heavier carbene analogues (L2E:) has also seen considerable interest. Specifically, small-molecule activation in the context of catalysis has seen much attention. Advances in the area of small-molecule activation by group 14 element(II) complexes will be discussed herein, followed by our efforts in this regard toward  their applications in efficient, well defined catalytic regimes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Peng Y, Guo JD, Ellis BD, Zhu Z, Fettinger JC, Nagase S, Power PP (2009) Reaction of hydrogen or ammonia with unsaturated germanium or tin molecules under ambient conditions: oxidative addition versus arene elimination. J Am Chem Soc 131:16272

    Article  CAS  Google Scholar 

  2. Rodriguez R, Gau D, Kato T, Saffon-Merceron N, De Cózar A, Cossío FP, Baceiredo A (2011) Reversible Binding of Ethylene to Silylene–Phosphine Complexes at Room Temperature. Angew Chem Int Ed 50:10414

    Article  CAS  Google Scholar 

  3. Wang X, Zhu Z, Peng Y, Lei H, Fettinger JC, Power PP (2009) Room-temperature reaction of carbon monoxide with a stable diarylgermylene. J Am Chem Soc 131:6912

    Article  CAS  Google Scholar 

  4. Carty AJ, Gynane MJS, Lappert MF, Miles SJ, Taylor NJ (1977) Subvalent Group 4B metal alkyls and amides. Part 6. Oxidative addition of an alkyl or aryl halide to bis[bis(trimethylsilyl)methyl]tin(II); hydrogen-1 nuclear magnetic resonance data on the tin (IV) adducts and a single-crystal X-ray study of tris[bis(trimethylsilyl)methyl]chlorotin (IV). J Chem Soc Dalton 6:2009

    Google Scholar 

  5. Lappert MF, Misra MC, Onyszchuk M, Rowe RS, Power PP, Slade MJ (1987) Subvalent group 14 metal compounds XI. Oxidative addition reactions of organic halides or acid anhydrides (including CH4−nCln, PhBr, BrN(SiMe3)2, But COCl, or (CF3CO)2O) to some bivalent group 14 metal amides or alkyls. J Organomet Chem 330:31

    Article  CAS  Google Scholar 

  6. Spikes GH, Fettinger JC, Power PP (2005) Facile activation of dihydrogen by an unsaturated heavier main group compound. J Am Chem Soc 127:12232

    Article  CAS  Google Scholar 

  7. Welch GC, San-Juan RR, Masuda JD, Stephan DW (2006) Reversible, metal-free hydrogen activation. Science 314:1124

    Article  CAS  Google Scholar 

  8. Frey GD, Lavallo V, Donnadieu B, Schoeller WW, Bertrand G (2007) Facile splitting of hydrogen and ammonia by nucleophilic activation at a single carbon center. Science 316:439

    Article  CAS  Google Scholar 

  9. Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ (1984) Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. J Am Chem Soc 106:451

    Article  CAS  Google Scholar 

  10. McGrady GS, Guilera G (2003) The multifarious world of transition metal hydrides. Chem Soc Rev 32:383

    Article  CAS  Google Scholar 

  11. Lavallo V, Canac Y, Donnadieu B, Schoeller WW, Bertrand G (2006) CO fixation to stable acyclic and cyclic alkyl amino carbenes: stable amino ketenes with a small HOMO–LUMO gap. Angew Chem Int Ed 45:3488

    Article  CAS  Google Scholar 

  12. Zhao J, Goldman AS, Hartwig JF (2005) Oxidative addition of ammonia to form a stable monomeric amido hydride complex. Science 307:1080

    Google Scholar 

  13. Casalnuovo AL, Calabrese JC, Milstein D (1987) Nitrogen-hydrogen activation. 1. Oxidative addition of ammonia to iridium(I). Isolation, structural characterization and reactivity of amidoiridium hydrides. Inorg Chem 26:973

    Article  Google Scholar 

  14. Hudnall TW, Moerdyk JP, Bielawski CW (2010) Ammonia N–H activation by a N,N′-diamidocarbene. Chem Commun 46:4288

    Article  CAS  Google Scholar 

  15. Siemeling U, Färber C, Bruhn C, Leibold M, Selent D, Baumann W, von Hopffgarten M, Goedeckec C, Frenking G (2010) N-heterocyclic carbenes which readily add ammonia, carbon monoxide and other small molecules. Chem Sci 1:697

    Article  CAS  Google Scholar 

  16. Peng Y, Ellis BD, Wang X, Power PP (2008) Diarylstannylene activation of hydrogen or ammonia with arene elimination. J Am Chem Soc 130:12268

    Article  CAS  Google Scholar 

  17. Hartwig JF (1998) Aromatic aminations by heterogeneous Ni0/C catalysis. Angew Chem Int Ed 37:2046

    Article  CAS  Google Scholar 

  18. Sambiagio C, Marsden SP, John-Blacker A, McGowan PC (2014) Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chem Soc Rev 43:3525

    Article  CAS  Google Scholar 

  19. Peng Y, Guo JD, Ellis BD, Zhu Z, Fettinger JC, Nagase S, Power PP (2009) Reaction of hydrogen or ammonia with unsaturated germanium or tin molecules under ambient conditions: oxidative addition versus arene elimination. J Am Chem Soc 131:16272

    Article  CAS  Google Scholar 

  20. Brown ZD, Erickson JD, Fettinger JC, Power PP (2013) Facile, High-Yield Functionalization of Germanium and Tin by Oxidative Insertion of Tetrelenes into the E–H Bonds of Inorganic Acids (E = C, N, O, F): Arene Elimination versus Oxidative Addition and Formation of a Germanium Cation–Water Complex. Organometallics 32:617

    Article  CAS  Google Scholar 

  21. Ottosson H, Steel PG (2006) Silylenes, Silenes, and Disilenes: Novel Silicon-Based Reagents for Organic Synthesis?. Chem Eur J 12:1576

    Article  CAS  Google Scholar 

  22. Yao S, Xiong Y, Driess M (2011) Zwitterionic and donor-stabilized N-heterocyclic silylenes (NHSis) for metal-free activation of small molecules. Organometallics 30:1748

    Article  CAS  Google Scholar 

  23. Sen SS, Khan S, Samuel PP, Roesky HW (2012) Chemistry of functionalized silylenes. Chem Sci 3:659

    Article  CAS  Google Scholar 

  24. Harder S (2010) From limestone to catalysis: application of calcium compounds as homogeneous catalysts. Chem Rev 110:3852

    Article  CAS  Google Scholar 

  25. Arrowsmith M, Hadlington TJ, Hill MS, Kociok-Köhn G (2012) Magnesium-catalysed hydroboration of aldehydes and ketones. Chem Commun 48:4567

    Article  CAS  Google Scholar 

  26. Barrett AGM, Crimmin MR, Hill MS, Procopiou PA (2010) Heterofunctionalization catalysis with organometallic complexes of calcium, strontium and barium. Proc R Soc A 466:927

    Article  CAS  Google Scholar 

  27. Leich V, Spaniol TP, Maron L, Okuda J (2014) Hydrosilylation catalysis by an earth alkaline metal silyl: synthesis, characterization, and reactivity of bis(triphenylsilyl)calcium. Chem Commun 50:2311

    Article  CAS  Google Scholar 

  28. Greb L, Oña-Burgos P, Schirmer B, Grimme S, Stephan DW, Paradies J (2012) Metal-free Catalytic Olefin Hydrogenation: Low-Temperature H2 Activation by Frustrated Lewis Pairs. Angew Chem Int Ed 51:10164

    Article  Google Scholar 

  29. Stephan DW (2015) Frustrated Lewis pairs: from concept to catalysis. Acc Chem Res 48:306

    Article  CAS  Google Scholar 

  30. Rivard E, Fischer RC, Wolf R, Peng Y, Merrill WA, Schley ND, Zhu Z, Pu L, Fettinger JC, Teat SJ, Nowik I, Herber RH, Takagi N, Nagase S, Power PP (2007) Isomeric Forms of Heavier Main Group Hydrides: Experimental and Theoretical Studies of the [Sn(Ar)H]2 (Ar = Terphenyl) System. J Am Chem Soc 129:16197

    Article  CAS  Google Scholar 

  31. Pineda LW, Jancik V, Starke K, Oswald RB, Roesky HW (2006) Stable monomeric germanium(II) and tin(II) compounds with terminal hydrides. Angew Chem 118:2664

    Article  Google Scholar 

  32. Jana A, Tavčar G, Roesky HW, John M (2010) Germanium(II) hydride mediated reduction of carbon dioxide to formic acid and methanol with ammonia borane as the hydrogen source. Dalton Trans 39:9487

    Article  CAS  Google Scholar 

  33. Tan G, Wang W, Bloma B, Driess M (2014) Mechanistic studies of CO2 reduction to methanol mediated by an N-heterocyclic germylene hydride. Dalton Trans 43:6006

    Article  CAS  Google Scholar 

  34. Jana A, Ghoshal D, Roesky HW, Objartel I, Schwab G, Stalke D (2009) A Germanium (II) Hydride as an Effective Reagent for Hydrogermylation Reactions. J Am Chem Soc 131:1288

    Article  CAS  Google Scholar 

  35. Chakraborty C, Zhang J, Krause JA, Guan H (2010) An efficient nickel catalyst for the reduction of carbon dioxide with a borane. J Am Chem Soc 132:8872

    Article  CAS  Google Scholar 

  36. Bontemps S, Vendier L, Sabo-Etienne S (2012) Borane-Mediated Carbon Dioxide Reduction at Ruthenium: Formation of C1 and C2 Compounds. Angew Chem Int Ed 51:1671

    Article  CAS  Google Scholar 

  37. Chong CC, Hirao H, Kinjo R (2014) Catalytic transfer hydrogenation by a trivalent phosphorus compound: phosphorus-ligand cooperation pathway or P(III)/P(V) redox pathway? Angew Chem Int Ed 53:4633

    Article  Google Scholar 

  38. Penafiel J, Maron L, Harder S (2014) Early main group metal catalysis: how important is the metal?. Angew Chem Int Ed 127:203

    Google Scholar 

  39. Blake AJ, Cunningham A, Ford A, Teat SJ, Woodward S (2000) Enantioselective reduction of prochiral ketones by catecholborane catalysed by chiral group 13 complexes. Chem Eur J 6:3586

    Article  CAS  Google Scholar 

  40. Hong S, Marks TJ (2004) Organolanthanide-catalyzed hydroamination. Acc Chem Res 37:673

    Article  CAS  Google Scholar 

  41. Spielmann J, Harder S (2007) Hydrocarbon-Soluble Calcium Hydride: A “Worker-Bee” in Calcium Chemistry. Chem Eur J 13:8928

    Article  CAS  Google Scholar 

  42. Harder S, Brettar S (2006) Rational Design of a Well-Defined Soluble Calcium Hydride Complex. Angew Chem Int Ed 45:3474

    Article  CAS  Google Scholar 

  43. Spielmann J, Harder S (2008) Reduction of Ketones with Hydrocarbon-Soluble Calcium Hydride: Stoichiometric Reactions and Catalytic Hydrosilylation. Eur. J. Inorg. Chem. 2008:1480

    Article  Google Scholar 

  44. Harder S, Spielmann J (2012) Calcium-mediated hydroboration of alkenes: “Trojan horse” or “true” catalysis?. J Organometal Chem 698:7

    Article  CAS  Google Scholar 

  45. Barrett AGM, Brinkmann C, Crimmin M, Hill MS, Hunt P, Procopiou PA (2009) Heavier Group 2 Metals and intermolecular hydroamination: a computational and synthetic assessment. J Am Chem Soc 131:12906

    Article  CAS  Google Scholar 

  46. Crimmin MR, Arrowsmith M, Barrett AGM, Casely IJ, Hill MS, Procopiou PA (2009) Intramolecular hydroamination of aminoalkenes by calcium and magnesium complexes: a synthetic and mechanistic study. J Am Chem Soc 131:9670

    Article  CAS  Google Scholar 

  47. Arrowsmith M, Hill MS, Hadlington T, Kociok-Köhn G, Weetman C (2011) Magnesium-catalyzed hydroboration of pyridines. Organometallics 30:5556

    Article  CAS  Google Scholar 

  48. Arrowsmith M, Hill MS, Kociok-Köhn G (2013) Magnesium Catalysis of Imine Hydroboration. Chem Eur J 19:2776

    Article  CAS  Google Scholar 

  49. Hao L, Harrod JF, Lebuis AM, Mu Y, Shu R, Samuel E, Woo HG (1998) Homogeneous catalytic hydrosilylation of pyridines. Angew Chem Int Ed 37:3126

    Article  CAS  Google Scholar 

  50. Gutsulyak DV, van der Est A, Nikonov GI (2011) Facile catalytic hydrosilylation of pyridines. Angew Chem Int Ed 50:1384

    Article  CAS  Google Scholar 

  51. Xie J, Zhu S, Zhou Q (2011) Transition metal-catalyzed enantioselective hydrogenation of enamines and imines. Chem Rev 111:1713

    Article  CAS  Google Scholar 

  52. Willoughby CA, Buchwald SL (1994) Catalytic asymmetric hydrogenation of imines with a chiral titanocene catalyst: kinetic and mechanistic investigations. J Am Chem Soc 116:11703

    Article  CAS  Google Scholar 

  53. Lindsley CW, Dimare M (1994) A boron-substituted analogue of the Shvo hydrogenation catalyst: catalytic hydroboration of aldehydes, imines, and ketones. Tetrahedron Lett 35:5141

    Article  CAS  Google Scholar 

  54. Koren-Selfridge L, Londino HN, Vellucci JK, Simmons BJ, Casey CP, Clark TB (2009) A boron-substituted analogue of the Shvo hydrogenation catalyst: catalytic hydroboration of aldehydes, imines, and ketones. Organometallics 28:2085

    Article  CAS  Google Scholar 

  55. Takagi N, Sakaki S (2013) Theoretical Study of Reactivity of Ge(II)-hydride Compound: Comparison with Rh(I)-Hydride Complex and Prediction of Full Catalytic Cycle by Ge(II)-hydride. J Am Chem Soc 135:8955

    Article  CAS  Google Scholar 

  56. Enders D, Niemeier O, Henseler A (2007) Organocatalysis by N-heterocyclic carbenes. Chem Rev 107:5606

    Article  CAS  Google Scholar 

  57. Fuerst DE, Jacobsen EN (2005) Thiourea-catalyzed enantioselective cyanosilylation of ketones. J Am Chem Soc 127:8964

    Article  CAS  Google Scholar 

  58. Johnson LT, Yeh S, Hope C (2013) The social cost of carbon: implications for modernizing our electricity system. J Environ Stud Sci 3:369

    Article  Google Scholar 

  59. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38:89

    Article  CAS  Google Scholar 

  60. Dubois MR, Dubois DL (2009) Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc Chem Res 42:1974

    Google Scholar 

  61. Jadhava SG, Vaidyaa PD, Bhanageb BM, Joshi JB (2014) Hydrogenation of CO2 to methanol: Importance of metal−oxide and metal−carbide interfaces in the activation of CO2. Chem Eng Res Des 92:2557

    Article  Google Scholar 

  62. Matsuo T, Kawaguchi H (2006) From carbon dioxide to methane: Homogeneous reduction of carbon dioxide with hydrosilanes catalyzed by zirconium−borane complexes. J Am Chem Soc 128:12362

    Article  CAS  Google Scholar 

  63. Mitton SJ, Turculet L (2012) Mild reduction of carbon dioxide to methane with tertiary silanes catalyzed by platinum and palladium silyl pincer complexes. Chem Eur J 18:15258

    Article  CAS  Google Scholar 

  64. Laitar DS, Mueller P, Sadighi JP (2005) Efficient homogeneous catalysis in the reduction of CO2 to CO. J Am Chem Soc 127:17196

    Article  CAS  Google Scholar 

  65. Dobrovetsky R, Stephan DW (2013) Catalytic reduction of CO2 to CO by using Zinc (II) and in situ generated carbodiphosphoranes. Angew Chem Int Ed 52:2516

    Article  CAS  Google Scholar 

  66. Chakraborty S, Zhang J, Krause JA, Guan H (2010) An efficient nickel catalyst for the reduction of carbon dioxide with a borane. J Am Chem Soc 132:8872

    Article  CAS  Google Scholar 

  67. Sgro MJ, Stephan DW (2012) Frustrated Lewis pair inspired carbon dioxide reduction by a ruthenium tris(aminophosphine) complex. Angew Chem Int Ed 51:11343

    Article  CAS  Google Scholar 

  68. Bontemps S, Vendier L, Sabo-Etienne S (2012) Borane-Mediated Carbon Dioxide Reduction at Ruthenium: Formation of C1 and C2 Compounds. Angew Chem Int Ed 51:1671

    Article  CAS  Google Scholar 

  69. Tijm PJA, Waller FJ, Brown DM (2001) Methanol technology developments for the new millennium. Appl Catal A Gen 221:275

    Article  CAS  Google Scholar 

  70. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636

    Article  CAS  Google Scholar 

  71. Anker MD, Arrowsmith M, Bellham P, Hill MS, Kociok-Köhn G, Liptrot DJ, Mahon MF, Weetman C (2014) Selective reduction of CO2 to a methanol equivalent by B(C6F5)3-activated alkaline earth catalysis. Chem Sci 5:2826

    Article  CAS  Google Scholar 

  72. Courtemanche MA, Légaré MA, Maron L, Fontaine FG (2014) Reducing CO2 to Methanol Using Frustrated Lewis Pairs: On the Mechanism of Phosphine–Borane-Mediated Hydroboration of CO2. J Am Chem Soc 136:10708

    Article  CAS  Google Scholar 

  73. Bontemps S, Vendier L, Sabo-Etienne S (2014) Ruthenium-catalyzed reduction of carbon dioxide to formaldehyde. J Am Chem Soc 136:4419

    Article  CAS  Google Scholar 

  74. Abdalla JAB, Riddlestone IM, Tirfoin R, Aldridge S (2014) Cooperative bond activation and catalytic reduction of carbon dioxide at a group 13 metal center. Angew Chem Int Ed 127:5187

    Google Scholar 

  75. Courtemanche MA, Légaré MA, Maron L, Fontaine FG (2013) A highly active phosphine–borane organocatalyst for the reduction of CO2 to methanol using hydroboranes. J Am Chem Soc 135:9326

    Article  CAS  Google Scholar 

  76. Li L, Fukawa T, Matsuo T, Hashizume D, Fueno H, Tanaka K, Tamao K (2012) A stable germanone as the first isolated heavy ketone with a terminal oxygen atom. Nature Chem 4:361

    Article  CAS  Google Scholar 

  77. Veith M, Becker S, Huch V (1989) Synthesis and Structure of the First Stable Germaneselone. Angew Chem Int Ed Engl 28:1237

    Article  Google Scholar 

  78. Tokitoh N, Kishikawa K, Okazaki R, Sasamori T, Nakata N, Takeda N (2002) Synthesis and characterization of an extremely hindered tetraaryl-substituted digermene and its unique properties in the solid state and in solution. Polyhedron 21:563

    Article  CAS  Google Scholar 

  79. Johnson BP, Almstätter S, Dielmann F, Bodensteiner M, Scheer M (2010) Synthesis and Reactivity of Low-Valent Group 14 Element Compounds. Z Anorg Allg Chem 636:1275

    Article  CAS  Google Scholar 

  80. Query IP, Squier PA, Larson EM, Isley NA, Clark TBJ (2011) Alkoxide-Catalyzed Reduction of Ketones with Pinacolborane. Org Chem 76:6452

    Article  CAS  Google Scholar 

  81. Sewell LJ, Huertos MA, Dickinson ME, Weller AS (2013) Dehydrocoupling of Dimethylamine Borane Catalyzed by Rh(PCy3)2H2Cl. Inorg Chem 52:4509

    Article  CAS  Google Scholar 

  82. Jana A, Roesky HW, Schulzke C, Döring A (2009) Germanium(II) hydride mediated reduction of carbon dioxide to formic acid and methanol with ammonia borane as the hydrogen source. Angew Chem Int Ed 48:1106

    Article  CAS  Google Scholar 

  83. Cottrell TL (1958) The strengths of chemical bonds, 2nd edn. Butterworths, London

    Google Scholar 

  84. Plotzitzka J, Kleeberg C (2014) CuI-Catalyzed Conjugate Addition of Silyl Boronic Esters: Retracing Catalytic Cycles Using Isolated Copper and Boron Enolate Intermediates. Organometallics 33:6915

    Article  CAS  Google Scholar 

  85. Laitar DS, Müller P, Sadighi JP (2005) Efficient Homogeneous Catalysis in the Reduction of CO2 to CO. J Am Chem Soc 127:17196

    Article  CAS  Google Scholar 

  86. Dudnik AS, Weidner VL, Motta A, Delferro M, Marks TJ (2014) Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst. Nat Chem 6:1100

    Article  CAS  Google Scholar 

  87. Murphy D, Sheehan JP, Spalding TR, Ferguson G, Lough AJ, Gallagher JF (1993) Compounds containing B–O–X bonds (X = Si, Ge, Sn, Pb). Part 4.—Crystal structures of B(OSiPh3)3, PhB(OSiPh3)2 and PhB(OGePh3)2. J Mater Chem 3:1275

    Article  CAS  Google Scholar 

  88. Hawkeswood S, Stephan DW (2005) Syntheses and reactions of the bis-boryloxide O(Bpin)2 (pin = O2C2Me4). Dalton Trans 12:2182

    Article  Google Scholar 

  89. Goodwin C, Smith A, Ortu F, Vitorica-Yrzebal I, Mills D (2015) Salt metathesis versus protonolysis routes for the synthesis of silylamide Hauser base (R2NMgX; X = halogen) and amido-Grignard (R2NMgR) complexes. Dalton Trans 45:6004

    Google Scholar 

  90. Oluyadi AA, Ma S, Muhoro CN (2013) Titanocene(II)-Catalyzed Hydroboration of Carbonyl Compounds. Organometallics 32:70

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrance John Hadlington .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hadlington, T.J. (2017). Stoichiometric Reactivity and Catalytic Applications of Heavier Tetrylene Derivatives. In: On the Catalytic Efficacy of Low-Oxidation State Group 14 Complexes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-51807-7_5

Download citation

Publish with us

Policies and ethics