Skip to main content

Reactivity of Low-Coordinate Group 14 Element(II) Hydride Complexes

  • Chapter
  • First Online:
On the Catalytic Efficacy of Low-Oxidation State Group 14 Complexes

Part of the book series: Springer Theses ((Springer Theses))

  • 416 Accesses

Abstract

The addition of element-hydrogen bonds across unsaturations (i.e. hydroelementation) is of paramount importance in organic synthesis. The application of group 14 element-hydrogen (E–H) bonds in this regard, however, has largely relied upon transition-metal (TM) catalysts or radical mechanisms. Recent developments in the synthesis of low-valent group 14 element hydride species has allowed for such reactivity in the absence of a catalyst or initiator. This chemistry will be dicussed in this chapter, leading to our research which has taken this a step further, involving facile E-H bond addtion to unactivated unsaturates such as alkenes, in some cases reversibly. Such reactivity is implicit in countless known catalytic cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knochel P, Molander GA (2014) Comprehensive organic synthesis II. Elsevier Ltd.

    Google Scholar 

  2. Aldridge S, Downs AJ (2001) Hydrides of the main-group metals: new variations on an old theme. Chem Rev 101:3305

    Google Scholar 

  3. Harder S (2012) Molecular early main group metal hydrides: synthetic challenge, structures and applications. Chem Comm 48:11165

    Google Scholar 

  4. Pelter A, Smith K, Brown HC (1988) Borane reagents (best synthetic methods). Academic Press

    Google Scholar 

  5. Spielmann J, Harder S (2007) Hydrocarbon-soluble calcium hydride: a “worker-bee” in calcium chemistry. Chem Eur J 13:8928

    Google Scholar 

  6. Fettinger JC, Gray PA, Melton CE, Power PP (2014) Hydroalumination of alkenes and alkynes by primary aluminum hydrides under mild conditions. Organometallics 33:6232

    Google Scholar 

  7. Hill MS, MacDougall DJ, Mahon MF (2010) Magnesium hydride-promoted dearomatisation of pyridine. Dalton Trans 39:11129

    Google Scholar 

  8. Stephan DW (2015) Frustrated lewis pairs: from concept to catalysis. Acc Chem Res 48:306

    Google Scholar 

  9. Barrett AGM, Crimmin MR, Hill MS, Procopiou PA (2010) Heterofunctionalization catalysis with organometallic complexes of calcium, strontium and barium. Proc R Soc A 466:927

    Google Scholar 

  10. Arrowsmith M, Hill MS, Hadlington T, Kociok-Köhn G, Weetman C (2011) Magnesium-catalyzed hydroboration of pyridines. Organometallics 30:5556

    Google Scholar 

  11. Buch F, Brettar J, Harder S (2006) Early main group metal catalysis: how important is the metal? Angew Chem 118:2807

    Google Scholar 

  12. Pineda LW, Jancik V, Starke K, Oswald RB, Roesky HW (2006) Stable monomeric germanium(II) and tin(II) compounds with terminal hydrides. Angew Chem 118:2664

    Google Scholar 

  13. Takagi N, Sakaki S (2013) Theoretical study of reactivity of Ge(II)-hydride compound: comparison with Rh(I)-hydride complex and prediction of full catalytic cycle by Ge(II)-hydride. J Am Chem Soc 135:8955

    Google Scholar 

  14. Mandal SK, Roesky HW (2012) Group 14 hydrides with low valent elements for activation of small molecules. Acc Chem Res 45:298

    Google Scholar 

  15. Jana A, Ghoshal D, Roesky HW, Objartel I, Schwab G, Stalke D (2009) A germanium(II) hydride as an effective reagent for hydrogermylation reactions. J Am Chem Soc 131:1288

    Google Scholar 

  16. Albertin G, Antoniutti S, Castro J, García-Fontán S, Zanardo G (2007) Preparation and reactivity of stannyl complexes of manganese and rhenium. Organometallics 26:2918

    Google Scholar 

  17. Jansen A, Görls H, Pitter S (2000) trans-[RuIICl(MeCN)5][RuIIICl4(MeCN)2]: A reactive intermediate in the homogeneous catalyzed hydrosilylation of carbon dioxide. Organometallics 19:135

    Google Scholar 

  18. Deglmann P, Ember E, Hofmann P, Pitter S, Walter O (2007) Experimental and theoretical investigations on the catalytic hydrosilylation of carbon dioxide with ruthenium nitrile complexes. Chem Eur J 13:2864

    Google Scholar 

  19. Jana A, Roesky HW, Schulzke C, Döring A (2009) Reactions of Tin(II) hydride species with unsaturated molecules. Angew Chem Int Ed 48:1106

    Google Scholar 

  20. Jana A, Tavčar G, Roesky HW, John M (2010) Germanium(II) hydride mediated reduction of carbon dioxide to formic acid and methanol with ammonia borane as the hydrogen source. Dalton Trans 39:9487

    Google Scholar 

  21. Tan G, Wang W, Bloma B, Driess M (2014) Mechanistic studies of CO2 reduction to methanol mediated by an N-heterocyclic germylene hydride. Dalton Trans 43:6006

    Google Scholar 

  22. Jana A, Roesky HW, Schulzke C (2010) Reactivity of germanium(II) hydride with nitrous oxide, trimethylsilyl azide, ketones, and alkynes and the reaction of a methyl analogue with trimethylsilyl diazomethane. Dalton Trans 39:132

    Google Scholar 

  23. Jana A, Roesky HW, Schulzke C, Samuel PP (2010) Reaction of Tin(II) hydride with compounds containing aromatic C−F bonds. Organometallics 29:4837

    Google Scholar 

  24. Al-Rafia SMI, Malcolm AC, McDonald R, Ferguson MJ, Rivard E (2011) Trapping the parent inorganic ethylenes H2SiGeH2 and H2SiSnH2 in the form of stable adducts at ambient temperature. Angew Chem 123:8504

    Google Scholar 

  25. Al-Rafia SMI, Malcolm AC, Liew SK, Ferguson MJ, Rivard E (2011) Stabilization of the heavy methylene analogues, GeH2 and SnH2, within the coordination sphere of a transition metal. J Am Chem Soc 133:777

    Google Scholar 

  26. Jana A, Sen SS, Roesky HW, Schulzke C, Dutta S, Pati SK (2009) End-on nitrogen insertion of a diazo compound into a germanium(II) hydrogen bond and a comparable reaction with diethyl azodicarboxylate. Angew Chem Int Ed 48:4246

    Google Scholar 

  27. Davies AG, Smith PJ (1982) Tin. In: Comprehensive organometallic chemistry, vol 2. Oxford, Pergamon, p 519

    Google Scholar 

  28. Rivière P, Rivière-Baudet M, Satgè J (1982) Germanium. In Comprehensive organometallic chemistry, vol 2. Oxford, Pergamon, p 39

    Google Scholar 

  29. Smith ND, Mancuso J, Lautens M (2000) Metal-catalyzed hydrostannations. Chem Rev 100:3257

    Google Scholar 

  30. Jana A, Roesky HW, Schulzke C (2009) Hydrostannylation of ketones and alkynes with LSnH [L = HC(CMeNAr)2, Ar = 2,6-iPr2C6H3]. Inorg Chem 48:9543

    Google Scholar 

  31. Stoelzel M, Präsang C, Inoue S, Enthaler S, Driess M (2012) Hydrosilylation of alkynes by Ni(CO)3-stabilized silicon(II) hydride. Angew Chem Int Ed 51:399

    Google Scholar 

  32. Rodriguez R, Gau D, Contie Y, Kato T, Saffon-Merceron N, Baceiredo A (2011) Synthesis of a phosphine-stabilized silicon(II) hydride and its addition to olefins: a catalyst-free hydrosilylation reaction. Angew Chem Int Ed 50:11492

    Google Scholar 

  33. Summerscales OT, Caputo CA, Knapp CE, Fettinger JC, Power PP (2012) The role of group 14 element hydrides in the activation of C–H bonds in cyclic olefins. J Am Chem Soc 134:14595

    Google Scholar 

  34. Summerscales OT, Fettinger JC, Power PP (2011) C–H activation of cycloalkenes by dimetallynes (M = Ge, Sn) under ambient conditions. J Am Chem Soc 133:11960

    Google Scholar 

  35. Jutzi P, Becker A, Stammler HG, Neumann B (1991) Synthesis and solid-state structure of (Me3Si)3CGeCH(SiMe3)2, a monomeric dialkylgermylene. Organometallics 10:1647

    Google Scholar 

  36. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441

    Google Scholar 

  37. Li J, Schenk C, Winter F, Scherer H, Trapp N, Higelin A, Keller S, Pöttgen R, Krossing I, Jones C (2012) Weak arene stabilization of bulky amido-germanium(II) and Tin(II) monocations. Angew Chem Int Ed 51:9557

    Google Scholar 

  38. Emsley J (1995) The elements, 2nd edn. Clarendon, Oxford

    Google Scholar 

  39. Choong SL, Woodul WD, Schenk C, Stasch A, Richards AF, Jones C (2011) Synthesis, characterization, and reactivity of an N-heterocyclic germanium(II) hydride: reversible hydrogermylation of a phosphaalkyne. Organometallics 30:5543

    Google Scholar 

  40. Hostetler MJ, Butts MD, Bergman RG (1993) Scope and mechanism of alkene hydrogenation/isomerization catalyzed by complexes of the type R2E(CH2)2M(CO)(L) (R = Cp, Me, Ph; E = phosphorus, tantalum; M = rhodium, iridium; L = CO, PPh3). J Am Chem Soc 115:2743

    Google Scholar 

  41. Manzini S, Nelson DJ, Nolan SP (2013) A highly active cationic ruthenium complex for alkene isomerisation: a catalyst for the synthesis of high value molecules. Chem Cat Chem 5:2848

    Google Scholar 

  42. Ashworth IW, Hillier IH, Nelson DJ, Percy JM, Vincent MA (2012) Searching for the hidden hydrides: the competition between alkene isomerization and metathesis with grubbs catalysts. Eur J Org Chem 29:5673

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrance John Hadlington .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hadlington, T.J. (2017). Reactivity of Low-Coordinate Group 14 Element(II) Hydride Complexes. In: On the Catalytic Efficacy of Low-Oxidation State Group 14 Complexes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-51807-7_4

Download citation

Publish with us

Policies and ethics