[122] Induced representations

  • Loring W. Tu
Part of the Contemporary Mathematicians book series (CM)
This is a brief summary of the results contained in [3]. We are dealing with a complex analogue of the following situation in the realm of finite groups: If U is a subgroup of a finite group G, there is an inducing function I, which converts U-modules into G-modules. By definition I assigns to the U-module E, a G-module I · E, consisting of the function \({\rm{f:}}\,{\rm{G}}\, \to \,{\rm{E}}\)


  1. Borel, A. and F. Hirzebruch, Characteristic classes and homogeneous spaces, to appear.Google Scholar
  2. Borel, A. and A. Weil, Représentations linéaires et espaces homogènes Kählerians des groupes de Lie compacts, Séminaire Bourbaki, May 1954. (Exposé by J. -P. Serre.)Google Scholar
  3. Bott, R., Homogeneous vector bundles, to appear in Ann. of Math.Google Scholar
  4. Froelicher, A. and A. Nijenhuis, A theorem on stability of complex structures, to appear in Pro c. Nat. Acad. Sci., U. S. A.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Loring W. Tu
    • 1
  1. 1.Department of MathematicsTufts UniversityMedfordUSA

Personalised recommendations