[117] Interview with Raoul Bott

  • Loring W. Tu
Part of the Contemporary Mathematicians book series (CM)


This is the edited text of two interviews with Raoul Bott, conducted by Allyn Jackson in October 2000.


  1. The reference numbers in this article correspond to the numbering in Raoul Bott: Collected Papers, volumes 1–4, Robert D. MacPherson, Editor, Birkhäuser, 1994.Google Scholar
  2. R. BOTT and R. J. DUFFIN, Impedance synthesis without use of transformers, J. Appl. Phys. 20 (1949), 816.MathSciNetCrossRefGoogle Scholar
  3. RAOUL BOTT, On torsion in Lie groups, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 586–588.Google Scholar
  4. RAOUL BOTT , Homogeneous vector bundles, Ann. of Math. (2) 66 (1957), 203–248MathSciNetCrossRefGoogle Scholar
  5. RAOUL BOTT and HANS SAMELSON, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964–1029.Google Scholar
  6. RAOUL BOTT, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313–337.MathSciNetCrossRefGoogle Scholar
  7. MICHAEL ATIYAH and RAOUL BOTT, On the periodicity theorem for complex vector bundles,Acta Math.112 (1964), 229–247.MathSciNetCrossRefGoogle Scholar
  8. MICHAEL ATIYAH and RAOUL BOTT, A Lefschetz fixed point formula for elliptic complexes. I, Ann. of Math. (2) 86 (1967), 374–407MathSciNetCrossRefGoogle Scholar
  9. MICHAEL ATIYAH and RAOUL BOTT , A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451-491.Google Scholar
  10. RAOUL BOTT, On topological obstructions to integra- bility. Actes du Congrès International des Mathé- maticiens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 27–36.Google Scholar
  11. R. BOTT and A. HAEFLIGER, On characteristic classes of Γ-foliations,Bull. Amer. Math. Soc. 78 (1972), 1039–1044.MathSciNetCrossRefGoogle Scholar
  12. Tomes, M. F. ATIYAH and R. BOTT, The Yang-Mills equations over Riemann surfaces,Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523-615.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Loring W. Tu
    • 1
  1. 1.Department of MathematicsTufts UniversityMedfordUSA

Personalised recommendations