[114] Integral Invariants of 3-Manifolds, II

  • Raoul Bott
  • Alberto S. Cattaneo
  • Loring W. Tu
Chapter
Part of the Contemporary Mathematicians book series (CM)

Abstract

This note is a sequel to our earlier paper of the same title [4] and describes invariants of rational homology 3-spheres associated to acyclic orthogonal local systems. Our work is in the spirit of the Axelrod–Singer papers [1], generalizes some of their results, and furnishes a new setting for the purely topological implications of their work.

References

  1. [1] S. Axelrod & I. M. Singer, Chern—Simons perturbation theory, Proc. XXth DGM Conference, (eds. S. Catto and A. Rocha), World Scientific, Singapore, 1992, 3- 45Google Scholar
  2. [2] Chern—Simons pe1iurbation theory. II, J. Differential Geom. 39 (1994) 173-213.Google Scholar
  3. [3] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423-472.Google Scholar
  4. [4] D. Bar-Nat.an, S. Garoufalidis, L. Rozansky & D. P. Thurston, The Århus invariant of rational homology 3-spheres: A highly nontrivial fiat connection on S 3, q-alg/9706004.Google Scholar
  5. [5] R. Bott & A. S. Cattaneo, Integral invariants of 3-manifolds, J. Differential Geom. 48 (1998) 91-133.Google Scholar
  6. [6] T. Q. T. Le, J. Murakami & T. Ohtsuki, On a unive1·sal quantum invariant of 3-manifolds, q-alg/9512002, to appear in Topology.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Raoul Bott
  • Alberto S. Cattaneo
  • Loring W. Tu
    • 1
  1. 1.Department of MathematicsTufts UniversityMedfordUSA

Personalised recommendations