Advertisement

[111] Integral Invariants of 3-Manifolds

  • Raoul Bott
  • Alberto S. Cattaneo
Chapter
Part of the Contemporary Mathematicians book series (CM)

Abstract

This note describes an invariant of rational homology 3-spheres in terms of configuration space integrals, which in some sense lies between the invariants of Axelrod and Singer [2] and those of Kontsevich [9].

References

  1. D. Altschuler & L. Freidel, Vassiliev knot invariants and Chern-Simons perturbation theory to all orders, Comm. Math. Phys. 187 (1997) 261- 287.MathSciNetCrossRefGoogle Scholar
  2. S. Axelrod & I. M. Singer, Chern- Simons perturbation theory, Proc. XXth DGM Conf., (ed. S. Catto and A. Rocha) World Scientific, Singapore, 1992, 3- 45; Chern- Simons perturbation theory. II, J. Different ial Geom. 39 (1994) 173- 213.Google Scholar
  3. D. Bar-Natan, Perturbative aspects of the Chern- Simons field theory, Ph. D. Thesis, Princeton University, 1991; Perturbative Ghern- Simons theory, J. Knot Theory Ramifications 4 (1995) 503-548.Google Scholar
  4. R. Bott & A. S. Cattaneo, Integral invariants of 3-manifolds. II.Google Scholar
  5. R. Bott & C. Taubes, On the self-linking of knots, J. Math. Phys. 35 (1994) 5247-5287.MathSciNetCrossRefGoogle Scholar
  6. S. S. Chern & J. Simons, Characteristic forms and geometric invariants, Ann. of Math. 99 (1974) 48-69.MathSciNetCrossRefGoogle Scholar
  7. W. Fulton & R. MacPherson, A compactification of configuration spaces, Ann. of Math. 139 (1994) 183- 225.MathSciNetCrossRefGoogle Scholar
  8. E. Guadagnini, M. Martellini & M. Mintchev, Perturbative aspects of Ghern-Simons topological qttantum field theory, Phys. Lett. B 227 (1989) 111.MathSciNetCrossRefGoogle Scholar
  9. M. Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress Math., Paris 1992, Volume II, Prog. Math. 120, Birkhauser, Basel, 1994, 120.Google Scholar
  10. C. Taubes, Homology cobordism and the simplest perturbative Chern-Simons 3-manifold invariant, Geometry, Topology, and Physics for Raoul Bott, (ed. S.-T . Yau), Internat. Press, Cambridge, 1994, 429- 538.Google Scholar
  11. E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351-399.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Raoul Bott
    • 1
  • Alberto S. Cattaneo
  1. 1.Harvard UniversityCambridgeUSA

Personalised recommendations