[98] Topological Aspects of Loop Groups

  • László Fehér
  • András Stipsicz
  • János Szenthe
Part of the Contemporary Mathematicians book series (CM)


The purpose of these lectures is to give an introduction to the topological aspect s of the loop space ΩG when G is a compact Lie group. We will give a direct method of computing the cohomology of ΩG from very geometric and group theoretic data, usually referred to as the diagram. The main tool in our calculations is a version of Morse theory adapted to the study of loop spaces.


  1. Adams, J. F., Lectures on Lie groups. Benjamin, New York, 1969.zbMATHGoogle Scholar
  2. Atiyah, M. F., Circular Symmetry and Stationary Phase Approximation, Astérisque 131 (1985), 311-323MathSciNetzbMATHGoogle Scholar
  3. Atiyah, M. F., Geometry and Physics of Knots, Cambridge University Press, Cambridge, 1990.CrossRefGoogle Scholar
  4. Atiyah, M. F.and Bott, R., The Moment Map and Equivariant Cohomology, Topology 23 (1984), 1- 28.MathSciNetCrossRefGoogle Scholar
  5. Atiyah, M. F., Bott, R. and Patodi, V. K., On the Heat Equation and the Index Theorem, Invent. Math. 28 (1973), 279 - 330 .MathSciNetCrossRefGoogle Scholar
  6. Beggs, E. J., The de Rham Complex on Infinite Dimensional Manifolds, Oxford Quarterly Journal of Math. 38 (1987), 131- 154.MathSciNetCrossRefGoogle Scholar
  7. Berline, N. and Vergne, M., Zéros d’un champs des vecteurs et classes charactéristiques équivariantes, Duke Math. Journal 50 (1983), 539-548.MathSciNetCrossRefGoogle Scholar
  8. Bismut, J. M ., Index Theorem and Equivariant Cohomology on the Loop Space, Comm. Math. Phys. 98 (1985), 213-237.MathSciNetCrossRefGoogle Scholar
  9. Bismut, J. M ., Localisation Formulas, Superconnections and the Index Theorem for Families, Comm. Math. Phys. 103 (1986), 127-166.MathSciNetCrossRefGoogle Scholar
  10. Bott, R ., The stable homotopy of the classical groups, Annals of Math. 70 (1959), 313-337.MathSciNetCrossRefGoogle Scholar
  11. Bott, R. and Samelson, H ., Application of the theory of Morse to symmetric spaces, Amer. J .Math. 80 (1958), 964- 1029.MathSciNetCrossRefGoogle Scholar
  12. Braam, P. J ., Floer Homology Groups For Homology Three-Spheres, Advances in Mathematics 88 (1991), 131-144.MathSciNetCrossRefGoogle Scholar
  13. Chen, K. T., Iterated Path Integrals of Differential Forms and Loop Space Homology, Annals of Math. 97 (1983), 217-246.CrossRefGoogle Scholar
  14. Duistermaat, J. J. and Heckmann, G. J ., On the Variation in the Cohomology of the Symplectic Form on the Reduced Phase Space, Invent. Math. 93 (1981), 139 - 149.Google Scholar
  15. Dijkgraaf, R. and Witten, E ., Topological Gauge Theory and Group Cohomology, IASSNS- HEP 89/33, THU 89/9.Google Scholar
  16. Getzler, E., Cyclic Homology and the Path Integral of the Dirac Operator, Preprint, MIT (1990).Google Scholar
  17. Getzler, E. and Jones, J.D.S., A-algebras and the Cyclic Bar Complex, Illinois Journal of Math. 32 (1990), 256-283.MathSciNetzbMATHGoogle Scholar
  18. Getzler, E. and Jones, J.D.S.and Petrack, S. B ., Differential Forms on Loop Spaces and the Cyclic Bar Complex, Topology 30 (1991), 339-372.MathSciNetCrossRefGoogle Scholar
  19. Glimm, J. and Jaffe, A., Quantum Physics, Springer-Verlag, New York, 1987, Second Edition.CrossRefGoogle Scholar
  20. Glimm, J. and Jaffe, A., Quantum Physics, Springer-Verlag, New York, 1987, Second Edition.CrossRefGoogle Scholar
  21. Griffiths, P. and Harris, J ., Principles of Algebraic Geometry, Wiley lnterscience, John Wiley & Sons, New York, 1978.zbMATHGoogle Scholar
  22. Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, San Francisco, London, 1978zbMATHGoogle Scholar
  23. Hirzebruch, F., Topological Methods in Algebraic Geometry, Grundlehren der mathematischen Wissenschaften 131, Springer- Verlag, Berlin, Heidelberg, 1978, Third Edition .Google Scholar
  24. Jones, J.D.S., Cyclic Homology and Equivariant Homology, Invent. Math. 87 (1987), 403-423.MathSciNetCrossRefGoogle Scholar
  25. Jones, J.D.S.and Petrack, S. B ., The Fixed Point Theorem in Equivariant Cohomology, Transactions of the A.M.S. 322 (1990), 35-49.MathSciNetCrossRefGoogle Scholar
  26. Jones, Vaughan F. R ., Heeke Algebra Representations of Braid Groups and Link Polynomials, Annals of Mathematics 126 (1987), 335-388.MathSciNetCrossRefGoogle Scholar
  27. Jones, Vaughan F. R ., Knot Theory and Statistical Mechanics, Scientific American (November,1990), 98-103.MathSciNetCrossRefGoogle Scholar
  28. Kauffman, Louis H ., State Models and the Jones Polynomial, Topology 26 (1987), 395-407.MathSciNetCrossRefGoogle Scholar
  29. Michelson, M. L. and Lawson, H. B., Spin Geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, New Jersey, 1989.Google Scholar
  30. Pressley, A. and Segal, G., Loop Groups, Oxford University Press, Oxford, 1986.zbMATHGoogle Scholar
  31. Quillen, D. G ., Algebra Cochairu and Cyclic Homology, IHES Publ. Math. 68 (1988), 139-174.CrossRefGoogle Scholar
  32. Verlinde, E., Fusion Rules and Modular Transformations in 2d Conformal Field Theories, Nucl. Phys. B 300 (1988), 360.CrossRefGoogle Scholar
  33. Wallach, Nolan R., Harmonic Analisis on Homogeneous Spaces, Pure and Applied Mathematics,vol. 19, Marcel Dekker, Inc., New York, 1978 .Google Scholar
  34. Witten, Edward, Topological Quantum Field Theory and the Jone.s Polynomial, Comm. Math. Phys. 117 (1988), 353-386.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • László Fehér
    • 1
  • András Stipsicz
    • 2
  • János Szenthe
    • 3
  1. 1.Department of AnalysisEötvös UniversityBudapestHungary
  2. 2.Department of MathematicsRutgers UniversityCamdenUSA
  3. 3.Department of GeometryEötvös UniversityBudapestHungary

Personalised recommendations