[96] On E. Verlinde’s Formula in the Context of Stable Bundles

  • Raoul Bott
Chapter
Part of the Contemporary Mathematicians book series (CM)

Abstract

E. Verlinde’s formula for the dimension of the nonabelian θ-functions is discussed from an algebraic geometry point of view and related to certain quotient rings of the representative ring of sums.

Bibliography

  1. M.F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc., London A 308 (1982), 523-615.MathSciNetCrossRefMATHGoogle Scholar
  2. S. Axelrod, S. Della Pietra, and E. Witten, Geometrie quantization of Chern Simons gauge theory, IAS Preprint, Oct. 1989.Google Scholar
  3. A. Beauville, M.S. Narasimhan, and S. Ramanan, Spectral curves and the generalized theta divisor, J. reine angew. Math. 398 (1989), 169-179.MathSciNetMATHGoogle Scholar
  4. G.D. Daskalopoulos, The topology of the space of stable bundles on a compact riemann surface I, to be published.Google Scholar
  5. J.-M. Drezet and M.S. Narasimhan, Groupe de Picard des variétés de modules de fìbrés sem-stables sur les courbes algébriques, Invent. Math. 97 (1989), 53-94.MathSciNetCrossRefMATHGoogle Scholar
  6. N.J. Hitchin, Fiat Connections and Geometrie Quantization, Preprint, Jan., 1990.Google Scholar
  7. G. Harder, Eine Bemerkung zu einer Arbeit von P.E. Newstead, J. Math. 242 (1970), 16-25.MathSciNetMATHGoogle Scholar
  8. G. Harder and M.S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles over curves, Math. Annalen 212, (1975), 215-248.CrossRefMATHGoogle Scholar
  9. D. Mumford, Geometric invariant theory, Ergebnisse der Mathematik, Springer (Berlin- Heidelberg-New York), 1965.Google Scholar
  10. V.B. Mehta and C.S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248. 205-239 (1980).MathSciNetCrossRefMATHGoogle Scholar
  11. P.E. Newstead, Topological properties of some spaces of stable bundles, Topology, Pergamon Press, vol. 6 (1967), 241-262.Google Scholar
  12. Oxford Seminar on Jones-Witten Theory, Michaelmas Term 1988.Google Scholar
  13. T.R. Ramadas, Chern-Simons gauge theory and projectively flat vector bundles on Mg y MIT Preprint, 1989.Google Scholar
  14. C.S. Seshadri, Space of unitary vector bundles on a compact Riemann surface, Ann. of Math. M (1967), 303-336.Google Scholar
  15. S.S. Shatz, The decomposition and specialization of algebraic families of vector bun¬dles, Compositio Math.35 (1977), 163-187.MathSciNetMATHGoogle Scholar
  16. M. Thaddeus, Conformai field theory and the cohomology of the moduli space of stable bundles, Math. Inst., Oxford, England, in preparation.Google Scholar
  17. T. Tsuchiya, K. Ueno, and T. Yamada, Conf. F., Theory on universal family of stable curves with gauge symmetries, Advanced Studies in Pure Math. 19 (1989), 459-565.Google Scholar
  18. H. Veriinde and E. Veriinde, Conformai field theory and geometric quantization, IAS Preprint, Oct. 1989.Google Scholar
  19. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989), 351-399.MathSciNetCrossRefMATHGoogle Scholar
  20. E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988), 353-386.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Raoul Bott
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations