[95] Stable Bundles Revisited

  • Loring W. Tu
  • Raoul Bott
Part of the Contemporary Mathematicians book series (CM)


The topological classification of complex vector bundles over a Riemann surface is of course very simple: they are classified by one integer c1(E), corresponding to the first Chern class of E. On the other hand, a classification in the complex-analytic—or algebro-geometric—category leads to “continuous moduli” and subtle phenomena which have links with number theory, gauge theory, and conformal field theory. I will try to report briefly on some of these developments here.


  1. M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1982) 523-615MathSciNetCrossRefGoogle Scholar
  2. S. Axelrod, S. Della Pietra and E. Witten, Geometric quantization of Chern-Simons gauge theory, J. Differential Geometry 33 (1991), 787-902.MathSciNetCrossRefGoogle Scholar
  3. A. Beauville, M. S. Narasimhan and S. Ramanan, Spectral curves and the generalized theta divisor, J . Reine Angew. Math 398 (1989), 169-179.zbMATHGoogle Scholar
  4. A. Beauville, M. S. Narasimhan and S. Ramanan, Spectral curves and the generalized theta divisor, J . Reine Angew. Math 398 (1989), 169-179.zbMATHGoogle Scholar
  5. G. Harder, Eine Bemerkung zu einer Arbeit von P. E. Newstead, J . Reine Angew. Math 242 (1970), 16-25.MathSciNetzbMATHGoogle Scholar
  6. G. Harder and M.S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles over curves, Math . Ann. 212 (1975) 215-248.CrossRefGoogle Scholar
  7. N. J. Hitchin Flat connections and geometric quantization Preprint, 1990Google Scholar
  8. D. Mumford, Geometric invariant theory, Ergebnisse Math Vol. 34, Springer, Berlin 1965CrossRefGoogle Scholar
  9. V. B. Mehta and C. S. Seshadri Moduli of vector bundles on curves with parabolic structuresMath. Ann. 248 ( 1980) 205-239MathSciNetCrossRefGoogle Scholar
  10. P. E. Newstead Topological properties of some spaces of stable bundles,Topology 6 (1967) 241-262 MathSciNetCrossRefGoogle Scholar
  11. Oxford Seminar on Jones-Witten Theory, Michael mas Term, 1988.Google Scholar
  12. T. R. Ramadas Chern-Simons gauge theory and projectively flat vector bundles on µg MIT Preprint, 1989.Google Scholar
  13. C. S. SeshadriSpace of unitary vector bundles on a compact Riemann surfaceAnn. of Math. 85 (1967) 303-336.MathSciNetCrossRefGoogle Scholar
  14. S. S. Shatz,The decomposition and specialization of algebraic families of vector bundlesCompositio Math. 35 (1977) 163-187.MathSciNetzbMATHGoogle Scholar
  15. T. Tsuchiya, K. Ueno and T. Yamada,Conf on theory on universal family of stable cur ves with gauge symmetriesAdvanced Studies in Pure Math. 19 (1989) 459-565.Google Scholar
  16. H. Verlinde and E. VerlindeConformal field theory and geometric quantizationPreprint, Institute for Advanced Study, Princeton, 1989Google Scholar
  17. A. Weil,Generalisation des fonctions abeliennesJ. Math. Pures Appl. 47 (1938) 17.zbMATHGoogle Scholar
  18. E. Witten,Quantum field theory and the Jones polynomialCommun. Math. Phys. 121 (1989) 351-399.MathSciNetCrossRefGoogle Scholar
  19. E. Witten,Topological quantum field theoryComm. Math. Phys. 117 (1988) 353-386MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Loring W. Tu
    • 1
  • Raoul Bott
  1. 1.Department of MathematicsTufts UniversityMedfordUSA

Personalised recommendations