Equivariant Characteristic Classes (Commentary on [116])

  • Loring W. Tu
Part of the Contemporary Mathematicians book series (CM)


I was trained as an algebraic geometer under Phillip A. Griffiths, but I have always had an abiding interest in topology, especially Raoul Bott’s kind of topology. In 1995 Raoul Bott gave a series of lectures at Brown University on equivariant cohomology. I was very much captivated by his presentation of the subject matter.


  1. [A86]
    A. Arabia, Cycles de Schubert et cohomologie équivariante de KT. (French) [Schubert cycles and equivariant cohomology of KT] Invent. Math. 85 (1986), no. 1, 39–52.Google Scholar
  2. [A89]
    A. Arabia, Cohomologie T-équivariante de la variété de drapeaux d’un groupe de Kac-Moody. (French) [T-equivariant cohomology of the flag manifold of a Kac-Moody group] Bull. Soc. Math. France 117 (1989), no. 2, 129–165.Google Scholar
  3. [BGV04]
    N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, corrected reprint of the 1992 original, Springer, Berlin, 2004.Google Scholar
  4. [BV82]
    N. Berline and M. Vergne, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante. (French) [Equivariant characteristic classes. Localization formula in equivariant cohomology] C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 9, 539–541.Google Scholar
  5. [BV83]
    N. Berline and M. Vergne, Zéros d’un champ de vecteurs et classes caractéristiques équivariantes. (French) [Zeros of a vector field and equivariant characteristic classes] Duke Math. J. 50 (1983), no. 2, 539–549.Google Scholar
  6. [Br98]
    M. Brion, Equivariant cohomology and equivariant intersection theory. Notes by Alvaro Rittatore. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Representation theories and algebraic geometry (Montreal, PQ, 1997), 1–37, Kluwer Acad. Publ., Dordrecht, 1998.Google Scholar
  7. [G94]
    E. Getzler, The equivariant Chern character for non-compact Lie groups, Adv. Math. 109 (1994), no. 1, 88–107.Google Scholar
  8. [KT16]
    A. Kübel and A. Thom, Equivariant forms in the Cartan model and Borel equivariant cohomology, arXiv:math.AT/1508.07847v2.Google Scholar
  9. [LGTX07]
    C. Laurent-Gengoux, J.-L. Tu, and P. Xu, Chern-Weil map for principal bundles over groupoids, Math Z. 255 (2007), no. 3, 451–491.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsTufts UniversityMedfordUSA

Personalised recommendations