Configuration Space Integrals: Bridging Physics, Geometry, and Topology of Knots and Links (Commentary on [106], [108], [109])

  • Ismar VolićEmail author
Part of the Contemporary Mathematicians book series (CM)


Early 1990s witnessed an emergence of new techniques and points of view in the study of spaces of knots and spaces of embeddings more generally. One of the most exciting developments was the introduction of finite type or Vassiliev knot invariants [Vas90]. To explain, any knot invariant V can be extended to singular knots with n transverse double points via the repeated use of the Vassiliev skein relation


  1. [AS94]
    Scott Axelrod and I. M. Singer. Chern-Simons perturbation theory. II. J. Differential Geom., 39(1):173–213, 1994.MathSciNetCrossRefGoogle Scholar
  2. [AT14]
    Gregory Arone and Victor Turchin. On the rational homology of high-dimensional analogues of spaces of long knots. Geom. Topol., 18(3):1261–1322, 2014.MathSciNetCrossRefGoogle Scholar
  3. [BC98]
    Raoul Bott and Alberto S. Cattaneo. Integral invariants of 3-manifolds. J. Differential Geom., 48(1):91–133, 1998.MathSciNetCrossRefGoogle Scholar
  4. [BC99]
    Raoul Bott and Alberto S. Cattaneo. Integral invariants of 3-manifolds. II. J. Differential Geom., 53(1):1–13, 1999.MathSciNetCrossRefGoogle Scholar
  5. [BL93]
    Joan S. Birman and Xiao-Song Lin. Knot polynomials and Vassiliev’s invariants. Invent. Math., 111(2):225–270, 1993.MathSciNetCrossRefGoogle Scholar
  6. [BN]
    Dror Bar-Natan. Perturbative aspects of the Chern-Simons topological quantum field theory. Ph.D. thesis, Princeton University (1991).Google Scholar
  7. [BN95]
    Dror Bar-Natan. On the Vassiliev knot invariants. Topology, 34(2):423–472, 1995.MathSciNetCrossRefGoogle Scholar
  8. [Bot96]
    Raoul Bott. Configuration spaces and imbedding invariants. Turkish J. Math., 20(1):1–17, 1996.MathSciNetzbMATHGoogle Scholar
  9. [Bot97]
    Raoul Bott. Configuration spaces and imbedding problems. In Geometry and physics (Aarhus, 1995), volume 184 of Lecture Notes in Pure and Appl. Math., pages 135–140. Dekker, New York, 1997.Google Scholar
  10. [BT94]
    Raoul Bott and Clifford Taubes. On the self-linking of knots. J. Math. Phys., 35(10):5247–5287, 1994.MathSciNetCrossRefGoogle Scholar
  11. [Bud07]
    Ryan Budney. Little cubes and long knots. Topology, 46(1):1–27, 2007.MathSciNetCrossRefGoogle Scholar
  12. [CCRL02]
    Alberto S. Cattaneo, Paolo Cotta-Ramusino, and Riccardo Longoni. Configuration spaces and Vassiliev classes in any dimension. Algebr. Geom. Topol., 2:949–1000 (electronic), 2002.MathSciNetCrossRefGoogle Scholar
  13. [CCRL05]
    Alberto S. Cattaneo, Paolo Cotta-Ramusino, and Riccardo Longoni. Algebraic structures on graph cohomology. J. Knot Theory Ramifications, 14(5):627–640, 2005.MathSciNetCrossRefGoogle Scholar
  14. [CDM12]
    S. Chmutov, S. Duzhin, and J. Mostovoy. Introduction to Vassiliev knot invariants. Cambridge University Press, Cambridge, 2012.CrossRefGoogle Scholar
  15. [CM10]
    Alberto S. Cattaneo and Pavel Mnëv. Remarks on Chern-Simons invariants. Comm. Math. Phys., 293(3):803–836, 2010.MathSciNetCrossRefGoogle Scholar
  16. [CR05]
    Alberto S. Cattaneo and Carlo A. Rossi. Wilson surfaces and higher dimensional knot invariants. Comm. Math. Phys., 256(3):513–537, 2005.MathSciNetCrossRefGoogle Scholar
  17. [FM94]
    William Fulton and Robert MacPherson. A compactification of configuration spaces. Ann. of Math. (2), 139(1):183–225, 1994.MathSciNetCrossRefGoogle Scholar
  18. [GMM89]
    E. Guadagnini, M. Martellini, and M. Mintchev. Chern-Simons field theory and link invariants. In Knots, topology and quantum field theories (Florence, 1989), pages 95–145. World Sci. Publ., River Edge, NJ, 1989.Google Scholar
  19. [KKV]
    Robin Koytcheff, and Ismar Volić. Milnor invariants of string links, trivalent trees, and configuration space integrals. arXiv 1511.02768.Google Scholar
  20. [KMV13]
    Robin Koytcheff, Brian A. Munson, and Ismar Volić. Configuration space integrals and the cohomology of the space of homotopy string links. J. Knot Theory Ramifications, 22(11):1–73, 2013.MathSciNetCrossRefGoogle Scholar
  21. [Kon94]
    Maxim Kontsevich. Feynman diagrams and low-dimensional topology. In First European Congress of Mathematics, Vol. II (Paris, 1992), volume 120 of Progr. Math., pages 97–121. Birkhäuser, Basel, 1994.Google Scholar
  22. [Kon99]
    Maxim Kontsevich. Operads and motives in deformation quantization. Lett. Math. Phys., 48(1):35–72, 1999. Moshé Flato (1937–1998).Google Scholar
  23. [Koy09]
    Robin Koytcheff. A homotopy-theoretic view of Bott-Taubes integrals and knot spaces. Algebr. Geom. Topol., 9(3):1467–1501, 2009.MathSciNetCrossRefGoogle Scholar
  24. [KV]
    Rafal Komendarczyk and Ismar Volić. On volume-preserving vector fields and finite type invariants of knots. Ergodic Theory and Dynamical Systems, 36(3):832–859, 2016.MathSciNetCrossRefGoogle Scholar
  25. [Lon04]
    Riccardo Longoni. Nontrivial classes in \(H^{{\ast}}(\mathrm{Imb}(S^{1}, \mathbb{R}^{n}))\) from nontrivalent graph cocycles. Int. J. Geom. Methods Mod. Phys., 1(5):639–650, 2004.MathSciNetCrossRefGoogle Scholar
  26. [LV14]
    Pascal Lambrechts and Ismar Volić. Formality of the little N-disks operad. Mem. Amer. Math. Soc., 230(1079):viii+116, 2014.Google Scholar
  27. [Sak08]
    Keiichi Sakai. Nontrivalent graph cocycle and cohomology of the long knot space. Algebr. Geom. Topol., 8(3):1499–1522, 2008.MathSciNetCrossRefGoogle Scholar
  28. [Sak10]
    Keiichi Sakai. Configuration space integrals for embedding spaces and the Haefliger invariant. J. Knot Theory Ramifications, 19(12):1597–1644, 2010.MathSciNetCrossRefGoogle Scholar
  29. [SW12]
    Keiichi Sakai and Tadayuki Watanabe. 1-loop graphs and configuration space integral for embedding spaces. Math. Proc. Cambridge Philos. Soc., 152(3):497–533, 2012.MathSciNetCrossRefGoogle Scholar
  30. [Thu]
    Dylan Thurston. Integral expressions for the Vassiliev knot invariants. arXiv:math.AT/0701350.Google Scholar
  31. [Vas90]
    V. A. Vassiliev. Cohomology of knot spaces. In Theory of singularities and its applications, volume 1 of Adv. Soviet Math., pages 23–69. Amer. Math. Soc., Providence, RI, 1990.Google Scholar
  32. [Vol06]
    Ismar Volić. Finite type knot invariants and the calculus of functors. Compos. Math., 142(1):222–250, 2006.MathSciNetCrossRefGoogle Scholar
  33. [Vol07]
    Ismar Volić. A survey of Bott-Taubes integration. J. Knot Theory Ramifications, 16(1):1–42, 2007.MathSciNetCrossRefGoogle Scholar
  34. [Vol13]
    Ismar Volić. Configuration space integrals and the cohomology of knot and link spaces. Morfismos, 17(2):1–56, 2013.MathSciNetGoogle Scholar
  35. [Wat07]
    Tadayuki Watanabe. Configuration space integral for long n-knots and the Alexander polynomial. Algebr. Geom. Topol., 7:47–92, 2007.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsWellesley CollegeWellesleyUSA

Personalised recommendations