The measurement problem

  • Klaas LandsmanEmail author
Open Access
Part of the Fundamental Theories of Physics book series (FTPH, volume 188)


The measurement problem of quantum mechanics was probably born in 1926: ‘Thus Schrödinger’s quantum mechanics gives a very definite answer to the question of the outcome of a collision; however, this does not involve any causal relationship. One obtains no answer to the question “what is the state after the collision,” but only to the question “how probable is a specific outcome of the collision” (in which the quantum-mechanical law of [conservation of] energy must of course be satisfied). This raises the entire problem of determinism. From the standpoint of our quantum mechanics, there is no quantity that could causally establish the outcome of a collision in each individual case; however, so far we are not aware of any experimental clue to the effect that there are internal properties of atoms that enforce some particular outcome. Should we hope to discover such properties that determine individual outcomes later (perhaps phases of the internal atomic motions)? Or should we believe that the agreement between theory and experiment concerning our inability to give conditions for a causal course of events is some pre-established harmony that is based on the non-existence of such conditions? I myself tend to relinquish determinism in the atomic world. But this is [also] a philosophical question, for which physical arguments alone are not decisive.’ (Born, 1926a, p. 866; translation by the author)


Quantum Mechanic Pure State Density Operator Measurement Problem Single Outcome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Copyright information

© The Author(s) 2017

This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.IMAPPRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations