Skip to main content

RF/Microwave Applications of Memristors

  • Chapter
  • First Online:
Advances in Memristors, Memristive Devices and Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 701))

Abstract

Memristor-based technology could be utilized, potentially, to enhance performance of many RF/microwave subsystems. Application of memristors in RF/microwave circuits, and in a broader context in electromagnetic systems, is another challenging field for researchers and engineers. In this application frontier, the research efforts might be divided, for example, into the following important classes of applications: (1) frequency selective surface, reconfigurable planar absorber, (2) reconfigurable antenna, direct antenna modulation, (3) RF/microwave filter, split-ring resonator filter, hairpin-line filter, capacitively coupled resonator filter, quasi-Gaussian lossy filter, (4) Wilkinson power divider. Memristors could be exploited as linear resistors with programmable resistance, which can be accurately adjusted to a desired or specified value. Precise controllability of the memristance value might be important for tuning microwave circuits and optimizing their performance. In several applications, such as filters, the high-frequency range of the operation enforces the memristor into the role of a linear resistor whose resistance can be adjusted electronically. On the other hand, some applications, such as reconfigurable electromagnetic absorbers, benefit from memristors as electromagnetic switches. Due to the unavailability of commercial memristors, it is necessary to use accurate circuit-level simulations for experimenting with the memristor-based RF/microwave circuits and for studying their performance. RF/microwave circuit simulators, which use the HSPICE engine for the time-domain transient simulation, such as NI AWR Microwave Office, can be used to verify the expected functionality of the considered memristor-based circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla, H., & Pickett, M.D. (2011). SPICE modeling of memristors. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Rio de Janeiro (Brasil), pp. 1832–1835.

    Google Scholar 

  • Adamatzky, A., & Chua, L. O. (2014). Memristor networks. New York: Springer.

    Book  MATH  Google Scholar 

  • Ascoli, A., Tetzlaff, R., Corinto, F., Mirchev, M., & Gilli, M. (2013a). Memristor-based filtering applications. In Proceedings of the 14th Latin American Test Workshop (LATW), Cordoba (Argentina), 1–6.

    Google Scholar 

  • Ascoli, A., Corinto, F., Senger, V., & Tetzlaff, R. (2013b). Memristor model comparison. IEEE Circuits and Systems Magazine, 13(2), 89–105.

    Article  Google Scholar 

  • Ascoli, A., Tetzlaff, R., Corinto, F., & Gilli, M. (2013c). PSpice switch-based versatile memristor model. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Beijing (China), pp. 205–208.

    Google Scholar 

  • Batas, D., & Fiedler, H. (2011). A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Transactions on Nanotechnology, 10(2), 250–255.

    Article  Google Scholar 

  • Bayat, F. M., Hoskins, B., & Strukov, D. B. (2015). Phenomenological modeling of memristive devices. Applied Physics A, 118, 779–786.

    Article  Google Scholar 

  • Biolek, D., Di Ventra, M., & Pershin, Y. V. (2013). Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering, 22(4), 945–968.

    Google Scholar 

  • Biolek, D., & Biolek, Z. (2014). Fourth fundamental circuit element: SPICE modeling and simulation. Chapter 4 in R. Tetzlaff (Ed.), Memristors and Memristive Systems. New York: Springer.

    Google Scholar 

  • Biolek, D., Biolek, Z., Biolková, V., & Kolka, Z. (2015). Reliable modeling of ideal generic memristors via state-space transformation. Radioengineering, 24(2), 393–407.

    Article  MATH  Google Scholar 

  • Bio Inspired Technologies, LLC, Boise, Idaho, USA. Retrieved June 2016, from http://www.bioinspired.net/.

  • Bray, M.G., & Werner, D.H. (2009). Passive electromagnetic switching with memristors. In Proceedings of the 2009 IEEE International Symposium on Antennas and Propagation, Charleston, SC, USA, June 1–5.

    Google Scholar 

  • Bray, M.G., & Werner, D.H. (2010). Passive switching of electromagnetic devices with memristors. Applied Physics Letters, 96(7), 073504 1–3.

    Google Scholar 

  • Chua, L.O. (1971). Memristor—The missing circuit element. IEEE Transactions on Circuit Theory, CT-18(5), 507–519.

    Google Scholar 

  • Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209–223.

    Article  MathSciNet  Google Scholar 

  • Chua, L. O. (2011). Resistance switching memories are memristors. Applied Physics A, 102, 765–783.

    Article  MATH  Google Scholar 

  • Chua, L. O. (2012). The fourth element. Proceedings of the IEEE, 100(6), 1920–1927.

    Article  Google Scholar 

  • Chua, L. O. (2015). Everything You wish to know about memristors but are afraid to ask. Radioengineering, 24(2), 319–368.

    Article  Google Scholar 

  • Corinto, F., & Ascoli, A. (2012). A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Transactions on Circuits and Systems I, 59(11), 2713–2726.

    Article  MathSciNet  Google Scholar 

  • Djordjević, A. R., Zajić, A. G., Steković, A. S., Nikolić, M. M., Marićević, Z. A., & Schemmann, M. F. C. (2003). On a class of low-reflection transmission-line quasi-Gaussian low-pass filters and their lumped-element approximations. IEEE Transactions on Microwave Theory and Techniques, 51(7), 1871–1877.

    Article  Google Scholar 

  • Engelhardt, M. (2015). SPICE differentiation. LT Journal of Analog Innovation, January 10–16.

    Google Scholar 

  • Eshraghian, K., Kavehei, O., Cho, K.-R., Chappell, J. M., Iqbal, A., Al-Sarawi, S. F., et al. (2012). Memristive device fundamentals and modeling: Applications to circuits and systems simulation. Proceedings of the IEEE, 100(6), 1991–2007.

    Article  Google Scholar 

  • Gregory, M.D. (2013). New methods in ultra-wideband array design and finite-difference time-domain modeling of memristive devices. Doctoral dissertation, Pennsylvania State University.

    Google Scholar 

  • Gregory, M.D., & Werner, D.H. (2014). Reconfigurable electromagnetics devices enabled by a non-linear dopant drift memristor. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis (USA), pp. 563–564.

    Google Scholar 

  • Gregory, M. D., & Werner, D. H. (2015). Application of the memristor in reconfigurable electromagnetic devices. IEEE Antennas and Propagation Magazine, 57(1), 239–248.

    Article  Google Scholar 

  • HSPICE, Synopsys, Inc., Mountain View, CA 94043, USA. Retrieved June, 2016, from http://www.synopsys.com/.

  • Hong, J.-S. (2011). Microstrip filters for RF/microwave applications (2nd ed.). Hoboken: Wiley.

    Book  Google Scholar 

  • IEEE. (2012). Memristors: Devices, models and applications. Proceedings of the IEEE, 100(6).

    Google Scholar 

  • IEEE. (2013). Special issue on memristors: theory and applications. IEEE Circuits and Systems Magazine, 13(2).

    Google Scholar 

  • Knowm, Inc., PO Box 4698, Santa Fe, NM, 87502-4698, USA. Retrieved June, 2016, from http://knowm.org/.

  • Kolka, Z., Biolek, D., & Biolková, V. (2012). Hybrid modelling and emulation of mem-systems. International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, 25(3), 216–225.

    Article  Google Scholar 

  • Kvatinsky, S., Friedman, E. G., Kolodny, A., & Weiser, U. C. (2013a). TEAM: ThrEshold adaptive memristor model. IEEE Transactions on Circuits and Systems I, 60(1), 211–221.

    Article  MathSciNet  Google Scholar 

  • Kvatinsky, S., Friedman, E. G., Kolodny, A., & Weiser, U. C. (2013b). The desired memristor for circuit designers. IEEE Circuits and Systems Magazine, 13(2), 17–22.

    Article  Google Scholar 

  • NI AWR Design Environment, National Instruments, Inc., El Segundo, CA 90245, USA. Retrieved June, 2016, from http://ni.com/awr.

  • Pershin, Y. V., & Di Ventra, M. (2010). Practical approach to programmable analog circuits with memristors. IEEE Transaction on Circuits and Systems I, 57(8), 1857–1864.

    Article  MathSciNet  Google Scholar 

  • Pershin, Y. V., & Di Ventra, M. (2013). Spice model of memristive devices with threshold. Radioengineering, 22(2), 485–489.

    Google Scholar 

  • Pi, S., Ghadiri-Sadrabadi, M., Bardin, J. C., & Xia, Q. (2015). Nanoscale memristive radiofrequency switches. Nature Communications, 7519(6), 1–9. doi:10.1038/ncomms8519.

    Google Scholar 

  • Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D. R., et al. (2009). Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, 106(074508), 1–6.

    Google Scholar 

  • Potrebić, M., & Tošić, D. (2015). Application of memristors in microwave passive circuits. Radioengineering, 24(2), 408–419.

    Article  Google Scholar 

  • Pozar, D. M. (2012). Microwave engineering (4th ed.). Hoboken: Wiley.

    Google Scholar 

  • Prodromakis, T., Peh, B. P., Papavassiliou, C., & Toumazou, C. (2011). A versatile memristor model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 58(9), 3099–3105.

    Article  Google Scholar 

  • Radwan, A. G., & Fouda, M. E. (2015). On the mathematical modeling of memristor, memcapacitor, and meminductor. New York: Springer.

    Book  MATH  Google Scholar 

  • Rogers Corporation, USA. (2015). RO4000 series high frequency circuit materials. Retrieved June, 2016, from http://www.rogerscorp.com/acs/products/54/ro4003c-laminates.aspx.

  • Sombrin, J., Michel, P., Soubercaze-Pun, G., & Albert, I. (2014). Memristors as non-linear behavioral models for passive inter-modulation simulation. In Proceedings of the 9th European Microwave Integrated Circuit Conference (EuMIC), Rome (Italy), pp. 385–388.

    Google Scholar 

  • Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80–83.

    Article  Google Scholar 

  • Tetzlaff, R. (2014). Memristors and memristive systems. New York: Springer.

    Book  Google Scholar 

  • Vaidyanathan, S., & Volos, C. (2016a). Advances and applications in nonlinear control systems. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Vaidyanathan, S., & Volos, C. (2016b). Advances and applications in chaotic systems. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Wang, L., Yuan, M., Xiao, T., Joines, W. T., & Liu, Q. H. (2011). Broadband electromagnetic radiation modulated by dual memristors. IEEE Antennas and Wireless Propagation Letters, 10, 623–626.

    Article  Google Scholar 

  • Wanhammar, L. (2009). Analog filters using MATLAB. New York: Springer.

    Book  MATH  Google Scholar 

  • Wasserman, E., Neilson, D., & Mido, T. (2005). Applied wave research’s analog office extends HSPICE transient simulations to RF frequencies. [online] NI AWR Design Environment, National Instruments, Inc., El Segundo, CA 90245, USA. Retrieved June, 2016, from http://ni.com/awr.

  • Werner, D.H., & Gregory, M.D. (2012). The memristor in reconfigurable radio frequency devices. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (APSURSI), Chicago (USA), pp. 1–2.

    Google Scholar 

  • Wedge, S., Wasserman, E., & Neilson, D. (2005). Transient simulations at RF frequencies. Microwave Journal 1–4.

    Google Scholar 

  • Wu, H., Zhou, J., Lan, C., Guo, Y., & Bi, K. (2014). Microwave memristive-like nonlinearity in a dielectric metamaterial. Scientific Reports, 4(5499), 1–6.

    Google Scholar 

  • Xu, K., Zhang, Y., Spiegel, R.J., Joines, W.T., & Liu, Q.H. (2014a). Memristor-based UWB antenna with reconfigurable notched band. In Proceedings of Abstracts of the Progress in Electromagnetics Research Symposium, Guangzhou (China), p. 1656.

    Google Scholar 

  • Xu, K. D., Zhang, Y. H., Wang, L., Yuan, M. Q., Fan, Y., Joines, W. T., et al. (2014b). Two memristor SPICE models and their applications in microwave devices. IEEE Transactions on Nanotechnology, 13(3), 607–616.

    Article  Google Scholar 

  • Yakopcic, C., Taha, T. M., Subramanyam, G., & Pino, R. E. (2013). Generalized memristive device SPICE model and its application in circuit design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(8), 1201–1214.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Education, Science and Technological Development of the Republic of Serbia under Grant TR 32005. The authors would like to acknowledge the contribution of the EU COST Action IC1401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milka Potrebić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Potrebić, M., Tošić, D., Biolek, D. (2017). RF/Microwave Applications of Memristors. In: Vaidyanathan, S., Volos, C. (eds) Advances in Memristors, Memristive Devices and Systems. Studies in Computational Intelligence, vol 701. Springer, Cham. https://doi.org/10.1007/978-3-319-51724-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51724-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51723-0

  • Online ISBN: 978-3-319-51724-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics