Advertisement

Why Laws of Classical Physics Have Their Form

  • Ihor Lubashevsky
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

This chapter is devoted to the detailed analysis of the relationship between the principle of microscopic level reducibility and the formalism of classical physics, which has been used in Chap.  1 Initially I had no intention of writing this chapter and included its materials in Sect.  1.6 There, however, they turned out to be in conflict in style not only with this section but also with Chap.  1 as a whole. The matter is that Chap.  1 is devoted to conceptual discussion of the analyzed problems, whereas the materials to be presented below involve a large amount of mathematical details and manipulations. Therefore, I have decided to place them into an individual chapter and to keep in Sect.  1.6 only the main conclusions drawn based on these mathematical manipulations. Actually the main purpose of the present chapter is to justify these statements.

Keywords

Phase Space Time Moment Causal Power System Motion Classical Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albeverio, S., Fenstad, J.E., Høegh-Krohn, R., Lindstrøm, T.: Nonstandard Methods in Stochastic Analysis and Mathematical Physics. Academic, Orlando (1986)zbMATHGoogle Scholar
  2. Arntzenius, F.: Are there really instantaneous velocities? The Monist 83 (2), 187–208 (2000)CrossRefGoogle Scholar
  3. Baron, S.: Presentism and Causation Revisited. Philos. Pap. 41 (1), 1–21 (2012)MathSciNetCrossRefGoogle Scholar
  4. Baron, S.: Back to the unchanging past. Pac. Philos. Q. (2015a). doi: 10.1111/papq.12127. Online first, 6 Nov
  5. Baron, S.: The priority of the now. Pac. Philos. Q. 96 (3), 325–348 (2015b)CrossRefGoogle Scholar
  6. Beaney, M.: Analysis. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Spring 2015 edn. Metaphysics Research Lab, Stanford University, Stanford (2015)Google Scholar
  7. Callender, C. (ed.): The Oxford Handbook of Philosophy of Time. Oxford University Press, Oxford (2011)Google Scholar
  8. Ciuni, R., Miller, K., Torrengo, G. (eds.): New Papers on the Present: Focus on Presentism. Philosophia Verlag GmbH, Munick (2013)Google Scholar
  9. Craig, W.: The extent of the present. Int. Stud. Philos. Sci. 14 (2), 165–185 (2000)MathSciNetCrossRefGoogle Scholar
  10. Dainton, B.: Time and Space, 2nd edn. Acumen, Durham (2010)Google Scholar
  11. Dowden, B.: Zeno’s Paradoxes, The Internet Encyclopedia of Philosophy (2016). http://www.iep.utm.edu. Access on 13 Jan 2016
  12. Easwaran, K.: Why physics uses second derivatives. Br. J. Philos. Sci. 65 (4), 845–862 (2014)CrossRefGoogle Scholar
  13. Faye, J.: Backward causation. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Spring 2010 edn. Metaphysics Research Lab, Stanford University, Stanford (2010)Google Scholar
  14. Goldblatt, R.: Lectures on the Hyperreals: An Introduction to Nonstandard Analysis. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  15. Harrington, J.: Instants and Instantaneous Velocity. PhilSci-ArchiveI ID: 8675 (2011). http://philsci-archive.pitt.edu/id/eprint/8675
  16. Hawley, K.: Temporal parts. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter 2010 edn. Metaphysics Research Lab, Stanford University, Stanford (2010)Google Scholar
  17. Hestevold, H.S.: Presentism: through thick and thin. Pac. Philos. Q. 89 (3), 325–347 (2008)CrossRefGoogle Scholar
  18. Huggett, N.: Zeno’s paradoxes. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter 2010 edn. Metaphysics Research Lab, Stanford University, Stanford (2010)Google Scholar
  19. Katzav, J.: Dispositions and the principle of least action. Analysis 64 (283), 206–214 (2004)CrossRefGoogle Scholar
  20. Lange, M.: Introduction to the Philosophy of Physics: Locality, Fields, Energy, and Mass. Blackwell Publishers, Oxford (2002)Google Scholar
  21. Lange, M.: How can instantaneous velocity fulfill its causal role? Philos. Rev. 114 (4), 433–468 (2005)CrossRefGoogle Scholar
  22. Lear, J.: A note on Zeno’s arrow. Phronesis 26 (2), 91–104 (1981)CrossRefGoogle Scholar
  23. Lepoidevin, R.: Zeno’s arrow and the significance of the present. In: Callender, C. (ed.) Time, Reality & Experience, vol. 50, pp. 57–72. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  24. Lubashevsky, I., Wagner, P., Mahnke, R.: Rational-driver approximation in car-following theory. Phys. Rev. E 68 (5), 056109 (15 pages) (2003b)Google Scholar
  25. Magidor, O.: Another note on Zeno’s arrow. Phronesis 53 (4), 359–372 (2008)CrossRefGoogle Scholar
  26. Markosian, N.: Time. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Spring 2014 edn. Metaphysics Research Lab, Stanford University, Stanford (2014)Google Scholar
  27. McKinnon, N.: Presentism and consciousness. Australas. J. Philos. 81 (3), 305–323 (2003)Google Scholar
  28. McLaughlin, W.I.: Resolving Zeno’s paradoxes. Sci. Am. 271 (5), 84–89 (1994)ADSCrossRefGoogle Scholar
  29. McLaughlin, W.I., Miller, S.L.: An epistemological use of nonstandard analysis to answer Zeno’s objections against motion. Synthese 92 (3), 371–384 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Motohashi, H., Suyama, T.: Third order equations of motion and the Ostrogradsky instability. Phys. Rev. D 91 (8), 085009 (2015)ADSMathSciNetCrossRefGoogle Scholar
  31. Oppy, G.: Can we describe possible circumstances in which we would have most reason to believe that time is two-dimensional? Ratio 17 (1), 68–83 (2004)CrossRefGoogle Scholar
  32. Ostrogradski, M.: Mémoires sur les équations différentielles relatives au problème des isopérimètres. Mem. Acad. St. Petersbourg VI (4), 385–517 (1850)Google Scholar
  33. Reeder, P.: Zeno’s arrow and the infinitesimal calculus. Synthese 192 (5), 1315–1335 (2015)MathSciNetCrossRefGoogle Scholar
  34. Richmond, A.M.: Plattner’s arrow: science and multi-dimensional time. Ratio 13 (3), 256–274 (2000)CrossRefGoogle Scholar
  35. Russell, B.: The Principles of Mathematics, 2nd edn., George Allen & Unwin LTD, London (1903/1937)Google Scholar
  36. Smart, B.T.H., Thébault, K.P.Y.: Dispositions and the principle of least action revisited. Analysis 75 (3), 386–395 (2015)CrossRefGoogle Scholar
  37. Smart, J.J.C.: The river of time. Mind 58 (232), 483–494 (1949)CrossRefGoogle Scholar
  38. Smilga, A.V.: Comments on the dynamics of the Pais–Uhlenbeck oscillator. SIGMA 5 (017), 1–13 (2009)MathSciNetzbMATHGoogle Scholar
  39. Smith, Q.: Time and degrees of existence: a theory of ‘Degree Presentism’. In: Callender, C. (ed.) Time, Reality & Experience, pp. 119–136. Cambridge University Press, Cambridge. Royal Institute of Philosophy Supplement, V. 50 (2002)Google Scholar
  40. Stephen, N.G.: On the Ostrogradski instability for higher-order derivative theories and a pseudo-mechanical energy. J. Sound Vibr. 310 (3), 729–739 (2008)ADSMathSciNetCrossRefGoogle Scholar
  41. Stöltzner, M.: The principle of least action as the logical empiricist’s Shibboleth. Stud. Hist. Philos. Sci. B: Stud. Hist. Philos. Mod. Phys. 34 (2), 285–318 (2003)Google Scholar
  42. Stöltzner, M.: Classical mechanics. In: Sarkar, S., Pfeifer, J. (eds.) The Philosophy of Science: An Encyclopedia, vols. 1–2, pp. 115–123. Routledge/Taylor & Francis Group, New York (2006)Google Scholar
  43. Stöltzner, M.: Can the principle of least action be considered a relativized a priori? In: Bitbol, M., Kerszberg, P., Petitot, J. (eds.) Constituting Objectivity: Transcendental Perspectives on Modern Physics, pp. 215–227. Springer Science+Business Media B.V. (2009)Google Scholar
  44. Terekhovich, V.: Metaphysics of the Principle of Least Action, pp. 1–33 (2015). e-print: arXiv:1511.03429Google Scholar
  45. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers: Volume I. Background and Theory, Volume II. Applications. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  46. Vlastos, G.: A note on Zeno’s arrow. Phronesis 11 (1), 3–18 (1966)CrossRefGoogle Scholar
  47. Wetzel, L.: Types and tokens. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Spring 2014 edn. Metaphysics Research Lab, Stanford University, Stanford (2014)Google Scholar
  48. White, M.J.: Zeno’s arrow, divisible infinitesimals, and chrysippus. Phronesis 27 (3), 239–254 (1982)CrossRefGoogle Scholar
  49. Woodard, R.: Avoiding dark energy with 1/R modifications of gravity. In: Papantonopoulos, L. (ed.) The Invisible Universe: Dark Matter and Dark Energy. Lecture Notes in Physics, vol. 720, pp. 403–433. Springer, Berlin/Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ihor Lubashevsky
    • 1
  1. 1.Dept. of Computer Science & EngineeringUniversity of AizuAizu-WakamatsuJapan

Personalised recommendations