Skip to main content

Resonant Disruption of Binary Stars by a Catalytic Black Hole

  • Chapter
  • First Online:
Gravity and the Quantum

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 187))

  • 1803 Accesses

Abstract

The motion of a black hole (BH) about the centre of gravity of its host galaxy induces a strong response from the surrounding stars. We revisit the case of a harmonic potential and argue that half of the stars on circular orbits in that potential shift to an orbit of lower energy, while the other half receives a positive boost. The black hole itself remains on an orbit of fixed amplitude and merely acts as a catalyst for the evolution of the stellar energy distribution function f(E). We then consider the response of binary stars to the motion of a central BH, and find that they are selectively heated up to disruption according to the binary’s total mass and semi-major axis a. This enhanced depletion of binaries (compared with the case when the BH is fixed) might hold an important key to a more complete history of BH dynamics at the heart of the Milky Way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Statistical root-n noise \(\sim 25\%\) remains large owing to the small number of sources but is inconsequential to the argument being developed here.

  2. 2.

    These figures are robust to details of the stellar cusp mass profile, so for instance a steeper density profile (\(3/2 \ge \gamma \le 7/4 < 2\)) would yield \(R_o\) in the range 0.2 to 0.3 pc; and \(\gamma = 0\), \(R_o \simeq 0.6 \) pc.

References

  1. D. Merritt, Dynamics and Evolution of Galactic Nuclei (Princeton University Press, Princeton, 2013)

    MATH  Google Scholar 

  2. S. Chatzopoulos, T.K. Fritz, O. Gerhard, S. Gillessen, C. Wegg, R. Genzel, O. Pfuhl, MNRAS 447, 948 (2015). doi:10.1093/mnras/stu2452

  3. Q. Yu, S. Tremaine, ApJ 599, 1129 (2003). doi:10.1086/379546

    Article  ADS  Google Scholar 

  4. R.M. O’Leary, A. Loeb, MNRAS 383, 86 (2008). doi:10.1111/j.1365-2966.2007.12531.x

    Article  ADS  Google Scholar 

  5. J.N. Bahcall, R.A. Wolf, ApJ 216, 883 (1977). doi:10.1086/155534

    Article  ADS  Google Scholar 

  6. M. Preto, D. Merritt, R. Spurzem, ApJ Lett. 613, L109 (2004). doi:10.1086/425139

    Article  ADS  Google Scholar 

  7. J. Binney, S. Tremaine, Galactic Dynamics, 2nd edn. (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  8. R. Genzel, R. Schödel, T. Ott, F. Eisenhauer, R. Hofmann, M. Lehnert, A. Eckart, T. Alexander, A. Sternberg, R. Lenzen, Y. Clénet, F. Lacombe, D. Rouan, A. Renzini, L.E. Tacconi-Garman, ApJ 594, 812 (2003). doi:10.1086/377127

    Article  ADS  Google Scholar 

  9. R. Schödel, A. Eckart, T. Alexander, D. Merritt, R. Genzel, A. Sternberg, L. Meyer, F. Kul, J. Moultaka, T. Ott, C. Straubmeier, A&A 469, 125 (2007). doi:10.1051/0004-6361:20065089

    Article  ADS  Google Scholar 

  10. T.K. Fritz, S. Chatzopoulos, O. Gerhard, S. Gillessen, R. Genzel, O. Pfuhl, S. Tacchella, F. Eisenhauer, T. Ott, ApJ 821, 44 (2016). doi:10.3847/0004-637X/821/1/44

    Article  ADS  Google Scholar 

  11. R. Schödel, A. Feldmeier, D. Kunneriath, S. Stolovy, N. Neumayer, P. Amaro-Seoane, S. Nishiyama, A&A 566, A47 (2014). doi:10.1051/0004-6361/201423481

    Article  ADS  Google Scholar 

  12. C.M. Boily, T. Padmanabhan, A. Paiement, MNRAS 383, 1619 (2008). doi:10.1111/j.1365-2966.2007.12682.x

    Article  ADS  Google Scholar 

  13. S. Inoue, MNRAS 416, 1181 (2011). doi:10.1111/j.1365-2966.2011.19122.x

    Article  ADS  Google Scholar 

  14. M.J. Reid, K.M. Menten, S. Trippe, T. Ott, R. Genzel, ApJ 659, 378 (2007). doi:10.1086/511744

    Article  ADS  Google Scholar 

  15. D. Raghavan, H.A. McAlister, T.J. Henry, D.W. Latham, G.W. Marcy, B.D. Mason, D.R. Gies, R.J. White, T.A. ten Brummelaar, ApJ Suppl. 190, 1 (2010). doi:10.1088/0067-0049/190/1/1

    Article  ADS  Google Scholar 

  16. S. Mikkola, S.J. Aarseth, Celest. Mech. Dyn. Astron. 47, 375 (1990)

    Google Scholar 

  17. S. Mikkola, S.J. Aarseth, Celest. Mech. Dyn. Astron. 57, 439 (1993). doi:10.1007/BF00695714

    Article  ADS  Google Scholar 

  18. S. Mikkola, IAU symposium, in Dynamical Evolution of Dense Stellar Systems, IAU Symposium, ed. by E. Vesperini, M. Giersz, A. Sills (2008), pp. 218–227. doi:10.1017/S1743921308015639

Download references

Acknowledgements

It is a pleasure to thank S. Mikkola for generously forwarding me a tailor-made version of his code AR4bb with which the calculations outlined here were performed. I would also like to thank J.S. Bagla for his invitation to revisit the problem of black hole dynamics, and T. Padmanabhan for sharing his insight into galactic dynamics over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Boily .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Boily, C.M. (2017). Resonant Disruption of Binary Stars by a Catalytic Black Hole. In: Bagla, J., Engineer, S. (eds) Gravity and the Quantum. Fundamental Theories of Physics, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-319-51700-1_3

Download citation

Publish with us

Policies and ethics