Skip to main content

Measuring Baryon Acoustic Oscillations with Angular Two-Point Correlation Function

  • Chapter
  • First Online:
Gravity and the Quantum

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 187))

Abstract

The Baryon Acoustic Oscillations (BAO) imprinted a characteristic correlation length in the large-scale structure of the universe that can be used as a standard ruler for mapping out the cosmic expansion history. Here, we discuss the application of the angular two-point correlation function, \(w(\theta )\), to a sample of luminous red galaxies of the Sloan Digital Sky Survey (SDSS) and derive two new measurements of the BAO angular scale at \(z = 0.235\) and \(z = 0.365\). Since noise and systematics may hinder the identification of the BAO signature in the \(w - \theta \) plane, we also introduce a potential new method to localize the acoustic bump in a model-independent way. We use these new measurements along with previous data to constrain cosmological parameters of dark energy models and to derive a new estimate of the acoustic scale \(r_s\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Only for comparison, the predictions of a flat \(\varLambda \)CDM cosmology, assuming \(\varOmega _m = 0.27\) and \( r_s=100\,\mathrm{{Mpc/h}}\), are \(\theta _\mathrm{{BAO}}(0.235) = 8.56^{\circ }\) and \(\theta _\mathrm{{BAO}}(0.365) = 5.68^{\circ }\).

  2. 2.

    For narrow redshift shells, such as the ones considered in this analysis (\(\delta z \sim 10^{-2}\)), it can be shown that the correction factor depends weakly on the cosmological model adopted (see Fig. 3 of [23]).

References

  1. P.J.E. Peebles, J.T. Yu, Astrophys. J. 162, 815 (1970)

    Article  ADS  Google Scholar 

  2. R.A. Sunyaev, Y.B. Zeldovich, Astrophys. Space Sci. 7, 3 (1970)

    ADS  Google Scholar 

  3. J.R. Bond, G. Efstathiou, Mon. Not. Roy. Astron. Soc. 226, 655 (1987)

    Article  ADS  Google Scholar 

  4. W. Hu, S. Dodelson, Annu. Rev. Astron. Astrophys. 40, 171 (2002)

    Article  ADS  Google Scholar 

  5. C. Blake, K. Glazebrook, Astrophys. J. 594, 665 (2003)

    Article  ADS  Google Scholar 

  6. S. Cole et al., 2dFGRS Collaboration. Mon. Not. Roy. Astron. Soc. 362, 505 (2005)

    Article  ADS  Google Scholar 

  7. D.J. Eisenstein, (SDSS Collaboration) et al. Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  8. W.J. Percival, B.A. Reid, D.J. Eisenstein et al., Mon. Not. Roy. Astron. Soc. 401, 2148 (2010)

    Article  ADS  Google Scholar 

  9. N. Padmanabhan, X. Xu, D.J. Eisenstein, R. Scalzo, A.J. Cuesta, K.T. Mehta, E. Kazin, Mon. Not. Roy. Astron. Soc. 427(3), 2132 (2012)

    Article  ADS  Google Scholar 

  10. F. Beutler, C. Blake, M. Colless et al., Mon. Not. Roy. Astron. Soc. 416, 3017 (2011)

    Article  ADS  Google Scholar 

  11. C. Blake, E.A. Kazin, F. Beutler et al., Mon. Not. Roy. Astron. Soc. 418, 1707 (2011)

    Article  ADS  Google Scholar 

  12. A. Sánchez et al., Mon. Not. Roy. Astron. Soc. 425, 415 (2012)

    Article  ADS  Google Scholar 

  13. D.H. Weinberg, M.J. Mortonson, D.J. Eisenstein, C. Hirata, A.G. Riess, E. Rozo, Phys. Rept. 530, 87 (2013)

    Article  ADS  Google Scholar 

  14. A.G. Sánchez, M. Crocce, A. Cabré, C.M. Baugh, E. Gaztañaga, Mon. Not. Roy. Astron. Soc. 400, 1643 (2009)

    Article  ADS  Google Scholar 

  15. S. Salazar-Albornoz, et al., (BOSS Collaboration), arXiv:1607.03144 astro-ph.CO

  16. G.C. Carvalho, A. Bernui, M. Benetti, J.C. Carvalho, J.S. Alcaniz, Phys. Rev. D 93, 023530 (2016)

    Article  ADS  Google Scholar 

  17. P.J.E. Peebles, The Large-Scale Structure of the Universe (Princeton University press, New Jersey, 1980)

    Google Scholar 

  18. T. Padmanabhan, Structure Formation in the Universe (Cambridge University press, Cambridge, 1993)

    Google Scholar 

  19. S.D. Landy, A.S. Szalay, ApJ 412, 64 (1993)

    Article  ADS  Google Scholar 

  20. G. Hinshaw et al., Astrophys. J. Suppl. 208, 19 (2013)

    Article  ADS  Google Scholar 

  21. P.A.R. Ade et al., Astron. Astrophys. 571, A16 (2014)

    Article  Google Scholar 

  22. A. Carnero et al., Mon. Not. Roy. Astron. Soc. 419, 1689 (2012)

    Article  ADS  Google Scholar 

  23. E. Sánchez et al., Mon. Not. Roy. Astron. Soc. 411, 277 (2011)

    Article  ADS  Google Scholar 

  24. T. Matsubara, A.S. Szalay, A.C. Pope, ApJ 606, 1 (2004)

    Article  ADS  Google Scholar 

  25. E.A. Kazin et al., Astrophys. J. 710, 1444 (2010)

    Article  ADS  Google Scholar 

  26. E.M. Barboza Jr., J.S. Alcaniz, Phys. Lett. B 666, 415 (2008)

    Article  ADS  Google Scholar 

  27. T. Padmanabhan, Phys. Rept. 380, 235 (2003)

    Article  ADS  Google Scholar 

  28. A. Heavens, R. Jimenez, L. Verde, Phys. Rev. Lett. 113, 241302 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Jailson S. Alcaniz dedicates this contribution to Prof. T. Padmanabhan with affection and profound admiration. May he continue to inspire us with new ideas about the Universe. Happy 60th birthday, Paddy!

The authors acknowledge support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). Joel C. Carvalho is also supported by the DTI-PCI/Observatório Nacional program of the Brazilian Ministry of Science, Technology and Innovation (MCTI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jailson S. Alcaniz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alcaniz, J.S., Carvalho, G.C., Bernui, A., Carvalho, J.C., Benetti, M. (2017). Measuring Baryon Acoustic Oscillations with Angular Two-Point Correlation Function. In: Bagla, J., Engineer, S. (eds) Gravity and the Quantum. Fundamental Theories of Physics, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-319-51700-1_2

Download citation

Publish with us

Policies and ethics