Human Auditory Neuroscience and the Cocktail Party Problem

  • Jonathan Z. SimonEmail author
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 60)


Experimental neuroscience using human subjects, to investigate how the auditory system solves the cocktail party problem, is a young and active field. The use of traditional neurophysiological methods is very tightly constrained in human subjects, but whole-brain monitoring techniques are considerably more advanced for humans than for animals. These latter methods in particular allow routine recording of neural activity from humans while they perform complex auditory tasks that would be very difficult for animals to learn. The findings reviewed in this chapter cover investigations obtained with a variety of experimental methodologies, including electroencephalography, magnetoencephalography, electrocorticography, and functional magnetic resonance imaging. Topics covered in detail include investigations in humans of the neural basis of spatial hearing, auditory stream segregation of simple sounds, auditory stream segregation of speech, and the neural role of attention. A key conceptual advance noted is a change of interpretational focus from the specific notion of attention-based neural gain, to the general role played by attention in neural auditory scene analysis and sound segregation. Similarly, investigations have gradually changed their emphasis from explanations of how auditory representations remain faithful to the acoustics of the stimulus, to how neural processing transforms them into new representations corresponding to the percept of an auditory scene. An additional important methodological advance has been the successful transfer of linear systems theory analysis techniques commonly used in single-unit recordings to whole-brain noninvasive recordings.


Attentional gain Auditory scene analysis Binaural integration Electrocorticography Electroencephalography Functional magnetic resonance imaging Heschl’s gyrus Human auditory system Interaural level difference Interaural time difference Magnetoencephalography Maskers Planum temporale Positron emission tomography Selective attention Speech Superior temporal gyrus 



Support for the author’s work was provided by the National Institute of Deafness and Other Communication Disorders Grant R01-DC-014085.

Compliance with Ethics Requirements

Jonathan Z. Simon declares that he has no conflict of interest.


  1. Ahissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., et al. (2001). Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proceedings of the National Academy of Sciences of the USA, 98(23), 13367–13372.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahveninen, J., Hamalainen, M., Jaaskelainen, I. P., Ahlfors, S. P., et al. (2011). Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise. Proceedings of the National Academy of Sciences of the USA, 108(10), 4182–4187.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahveninen, J., Kopco, N., & Jaaskelainen, I. P. (2014). Psychophysics and neuronal bases of sound localization in humans. Hearing Research, 307, 86–97.CrossRefPubMedGoogle Scholar
  4. Akram, S., Englitz, B., Elhilali, M., Simon, J. Z., & Shamma, S. A. (2014). Investigating the neural correlates of a streaming percept in an informational-masking paradigm. PLoS ONE, 9(12), e114427.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alain, C., Arnott, S. R., & Picton, T. W. (2001). Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 27(5), 1072–1089.PubMedGoogle Scholar
  6. Alain, C., Reinke, K., He, Y., Wang, C., & Lobaugh, N. (2005). Hearing two things at once: Neurophysiological indices of speech segregation and identification. Journal of Cognitive Neuroscience, 17(5), 811–818.CrossRefPubMedGoogle Scholar
  7. Bidet-Caulet, A., Fischer, C., Besle, J., Aguera, P. E., et al. (2007). Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex. The Journal of Neuroscience, 27(35), 9252–9261.CrossRefPubMedGoogle Scholar
  8. Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.Google Scholar
  9. Briley, P. M., Kitterick, P. T., & Summerfield, A. Q. (2013). Evidence for opponent process analysis of sound source location in humans. Journal of the Association for Research in Otolaryngology, 14(1), 83–101.CrossRefPubMedGoogle Scholar
  10. Briley, P. M., Goman, A. M., & Summerfield, A. Q. (2016). Physiological evidence for a midline spatial channel in human auditory cortex. Journal of the Association for Research in Otolaryngology, 17(4), 331–340.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brungart, D. S., Simpson, B. D., Ericson, M. A., & Scott, K. R. (2001). Informational and energetic masking effects in the perception of multiple simultaneous talkers. The Journal of the Acoustical Society of America, 110(5 Pt 1), 2527–2538.CrossRefPubMedGoogle Scholar
  12. Chait, M., Poeppel, D., & Simon, J. Z. (2006). Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cerebral Cortex, 16(6), 835–848.CrossRefPubMedGoogle Scholar
  13. Chait, M., de Cheveigne, A., Poeppel, D., & Simon, J. Z. (2010). Neural dynamics of attending and ignoring in human auditory cortex. Neuropsychologia, 48(11), 3262–3271.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with 2 Ears. The Journal of the Acoustical Society of America, 25(5), 975–979.CrossRefGoogle Scholar
  15. Cramer, E. M., & Huggins, W. H. (1958). Creation of pitch through binaural Interaction. The Journal of the Acoustical Society of America, 30(5), 413–417.CrossRefGoogle Scholar
  16. Cusack, R. (2005). The intraparietal sulcus and perceptual organization. Journal of Cognitive Neuroscience, 17(4), 641–651.CrossRefPubMedGoogle Scholar
  17. de Cheveigne, A. (2003). Time-domain auditory processing of speech. Journal of Phonetics, 31(3–4), 547–561.CrossRefGoogle Scholar
  18. Deike, S., Gaschler-Markefski, B., Brechmann, A., & Scheich, H. (2004). Auditory stream segregation relying on timbre involves left auditory cortex. NeuroReport, 15(9), 1511–1514.CrossRefPubMedGoogle Scholar
  19. Deike, S., Scheich, H., & Brechmann, A. (2010). Active stream segregation specifically involves the left human auditory cortex. Hearing Research, 265(1–2), 30–37.CrossRefPubMedGoogle Scholar
  20. Depireux, D. A., Simon, J. Z., Klein, D. J., & Shamma, S. A. (2001). Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. Journal of Neurophysiology, 85(3), 1220–1234.PubMedGoogle Scholar
  21. Dijkstra, K. V., Brunner, P., Gunduz, A., Coon, W., et al. (2015). Identifying the attended speaker using electrocorticographic (ECoG) signals. Brain-Computer Interfaces, 2(4), 161–173.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Di Liberto, G. M., O’Sullivan, J. A., & Lalor, E. C. (2015). Low-frequency cortical entrainment to speech reflects phoneme-level processing. Current Biology, 25(19), 2457–2465.CrossRefPubMedGoogle Scholar
  23. Ding, N., & Simon, J. Z. (2012a). Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. Journal of Neurophysiology, 107(1), 78–89.CrossRefPubMedGoogle Scholar
  24. Ding, N., & Simon, J. Z. (2012b). Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences of the USA, 109(29), 11854–11859.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ding, N., & Simon, J. Z. (2013). Adaptive temporal encoding leads to a background-insensitive cortical representation of speech. The Journal of Neuroscience, 33(13), 5728–5735.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ding, N., Chatterjee, M., & Simon, J. Z. (2014). Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure. NeuroImage, 88, 41–46.CrossRefPubMedGoogle Scholar
  27. Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158–164.CrossRefPubMedGoogle Scholar
  28. Dingle, R. N., Hall, S. E., & Phillips, D. P. (2010). A midline azimuthal channel in human spatial hearing. Hearing Research, 268(1–2), 67–74.CrossRefPubMedGoogle Scholar
  29. Dingle, R. N., Hall, S. E., & Phillips, D. P. (2012). The three-channel model of sound localization mechanisms: Interaural level differences. The Journal of the Acoustical Society of America, 131(5), 4023–4029.CrossRefPubMedGoogle Scholar
  30. Dykstra, A. R., Halgren, E., Thesen, T., Carlson, C. E., et al. (2011). Widespread brain areas engaged during a classical auditory streaming task revealed by intracranial EEG. Frontiers in Human Neuroscience, 5, 74.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Elhilali, M., Xiang, J., Shamma, S. A., & Simon, J. Z. (2009a). Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene. PLoS Biology, 7(6), e1000129.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Elhilali, M., Ma, L., Micheyl, C., Oxenham, A. J., & Shamma, S. A. (2009b). Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron, 61(2), 317–329.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gutschalk, A., & Dykstra, A. R. (2014). Functional imaging of auditory scene analysis. Hearing Research, 307, 98–110.CrossRefPubMedGoogle Scholar
  34. Gutschalk, A., Micheyl, C., Melcher, J. R., Rupp, A., et al. (2005). Neuromagnetic correlates of streaming in human auditory cortex. The Journal of Neuroscience, 25(22), 5382–5388.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gutschalk, A., Oxenham, A. J., Micheyl, C., Wilson, E. C., & Melcher, J. R. (2007). Human cortical activity during streaming without spectral cues suggests a general neural substrate for auditory stream segregation. The Journal of Neuroscience, 27(48), 13074–13081.CrossRefPubMedGoogle Scholar
  36. Gutschalk, A., Micheyl, C., & Oxenham, A. J. (2008). Neural correlates of auditory perceptual awareness under informational masking. PLoS Biology, 6(6), e138.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hambrook, D. A., & Tata, M. S. (2014). Theta-band phase tracking in the two-talker problem. Brain and Language, 135, 52–56.CrossRefPubMedGoogle Scholar
  38. Hawley, M. L., Litovsky, R. Y., & Culling, J. F. (2004). The benefit of binaural hearing in a cocktail party: Effect of location and type of interferer. The Journal of the Acoustical Society of America, 115(2), 833–843.CrossRefPubMedGoogle Scholar
  39. Hill, K. T., & Miller, L. M. (2010). Auditory attentional control and selection during cocktail party listening. Cerebral Cortex, 20(3), 583–590.CrossRefPubMedGoogle Scholar
  40. Hill, K. T., Bishop, C. W., & Miller, L. M. (2012). Auditory grouping mechanisms reflect a sound’s relative position in a sequence. Frontiers in Human Neuroscience, 6, 158.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182(4108), 177–180.CrossRefPubMedGoogle Scholar
  42. Horton, C., D’Zmura, M., & Srinivasan, R. (2013). Suppression of competing speech through entrainment of cortical oscillations. Journal of Neurophysiology, 109(12), 3082–3093.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hugdahl, K. (2005). Symmetry and asymmetry in the human brain. European Review, 13(Suppl. S2), 119–133.Google Scholar
  44. Jeffress, L. A. (1948). A place theory of sound localization. Journal of Comparative and Physiological Psychology, 41(1), 35–39.CrossRefPubMedGoogle Scholar
  45. Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the USA, 97(22), 11793–11799.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kayser, S. J., Ince, R. A., Gross, J., & Kayser, C. (2015). Irregular speech rate dissociates auditory cortical entrainment, evoked responses, and frontal alpha. The Journal of Neuroscience, 35(44), 14691–14701.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kerlin, J. R., Shahin, A. J., & Miller, L. M. (2010). Attentional gain control of ongoing cortical speech representations in a “cocktail party”. The Journal of Neuroscience, 30(2), 620–628.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kidd, G., Jr., Mason, C. R., & Richards, V. M. (2003). Multiple bursts, multiple looks, and stream coherence in the release from informational masking. The Journal of the Acoustical Society of America, 114(5), 2835–2845.CrossRefPubMedGoogle Scholar
  49. Kulesza, R. J., Jr. (2007). Cytoarchitecture of the human superior olivary complex: Medial and lateral superior olive. Hearing Research, 225(1–2), 80–90.CrossRefPubMedGoogle Scholar
  50. Lalor, E. C., & Foxe, J. J. (2010). Neural responses to uninterrupted natural speech can be extracted with precise temporal resolution. European Journal of Neuroscience, 31(1), 189–193.CrossRefGoogle Scholar
  51. Lee, A. K., Larson, E., Maddox, R. K., & Shinn-Cunningham, B. G. (2014). Using neuroimaging to understand the cortical mechanisms of auditory selective attention. Hearing Research, 307, 111–120.CrossRefPubMedGoogle Scholar
  52. Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54(6), 1001–1010.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lutkenhoner, B., & Steinstrater, O. (1998). High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiology and Neuro-Otology, 3(2–3), 191–213.CrossRefPubMedGoogle Scholar
  54. Maddox, R. K., Billimoria, C. P., Perrone, B. P., Shinn-Cunningham, B. G., & Sen, K. (2012). Competing sound sources reveal spatial effects in cortical processing. PLoS Biology, 10(5), e1001319.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Magezi, D. A., & Krumbholz, K. (2010). Evidence for opponent-channel coding of interaural time differences in human auditory cortex. Journal of Neurophysiology, 104(4), 1997–2007.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Makela, J. P., Hamalainen, M., Hari, R., & McEvoy, L. (1994). Whole-head mapping of middle-latency auditory evoked magnetic fields. Electroencephalography and Clinical Neurophysiology, 92(5), 414–421.CrossRefPubMedGoogle Scholar
  57. McAlpine, D. (2005). Creating a sense of auditory space. Journal of Physiology, 566(Pt 1), 21–28.CrossRefPubMedPubMedCentralGoogle Scholar
  58. McLaughlin, S. A., Higgins, N. C., & Stecker, G. C. (2016). Tuning to binaural cues in human auditory cortex. Journal of the Association for Research in Otolaryngology, 17(1), 37–53.CrossRefPubMedGoogle Scholar
  59. Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485(7397), 233–236.CrossRefPubMedGoogle Scholar
  60. Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343(6174), 1006–1010.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Middlebrooks, J. C., & Bremen, P. (2013). Spatial stream segregation by auditory cortical neurons. The Journal of Neuroscience, 33(27), 10986–11001.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Naatanen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590.CrossRefPubMedGoogle Scholar
  63. Nakai, T., Kato, C., & Matsuo, K. (2005). An FMRI study to investigate auditory attention: A model of the cocktail party phenomenon. Magnetic Resonance in Medical Sciences, 4(2), 75–82.CrossRefPubMedGoogle Scholar
  64. O’Sullivan, J. A., Shamma, S. A., & Lalor, E. C. (2015a). Evidence for neural computations of temporal coherence in an auditory scene and their enhancement during active listening. The Journal of Neuroscience, 35(18), 7256–7263.CrossRefPubMedGoogle Scholar
  65. O’Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., et al. (2015b). Attentional selection in a cocktail party environment can be decoded from single-trial EEG. Cerebral Cortex, 25(7), 1697–1706.CrossRefPubMedGoogle Scholar
  66. Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., et al. (2012). Reconstructing speech from human auditory cortex. PLoS Biology, 10(1), e1001251.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.Google Scholar
  68. Peelle, J. E., Gross, J., & Davis, M. H. (2013). Phase-locked responses to speech in human auditory cortex are enhanced during comprehension. Cerebral Cortex, 23(6), 1378–1387.CrossRefPubMedGoogle Scholar
  69. Power, A. J., Foxe, J. J., Forde, E. J., Reilly, R. B., & Lalor, E. C. (2012). At what time is the cocktail party? A late locus of selective attention to natural speech. European Journal of Neuroscience, 35(9), 1497–1503.CrossRefGoogle Scholar
  70. Ross, B., Tremblay, K. L., & Picton, T. W. (2007a). Physiological detection of interaural phase differences. The Journal of the Acoustical Society of America, 121(2), 1017–1027.CrossRefPubMedGoogle Scholar
  71. Ross, B., Fujioka, T., Tremblay, K. L., & Picton, T. W. (2007b). Aging in binaural hearing begins in mid-life: Evidence from cortical auditory-evoked responses to changes in interaural phase. The Journal of Neuroscience, 27(42), 11172–11178.CrossRefPubMedGoogle Scholar
  72. Ross, B., Miyazaki, T., Thompson, J., Jamali, S., & Fujioka, T. (2014). Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing. Journal of Neurophysiology, 112(8), 1871–1884.CrossRefPubMedGoogle Scholar
  73. Salminen, N. H., Tiitinen, H., Yrttiaho, S., & May, P. J. (2010). The neural code for interaural time difference in human auditory cortex. The Journal of the Acoustical Society of America, 127(2), EL60–65.Google Scholar
  74. Scott, S. K., & McGettigan, C. (2013). The neural processing of masked speech. Hearing Research, 303, 58–66.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Scott, S. K., Rosen, S., Wickham, L., & Wise, R. J. S. (2004). A positron emission tomography study of the neural basis of informational and energetic masking effects in speech perception. The Journal of the Acoustical Society of America, 115(2), 813–821.CrossRefPubMedGoogle Scholar
  76. Scott, S. K., Rosen, S., Beaman, C. P., Davis, J. P., & Wise, R. J. S. (2009). The neural processing of masked speech: Evidence for different mechanisms in the left and right temporal lobes. The Journal of the Acoustical Society of America, 125(3), 1737–1743.CrossRefPubMedGoogle Scholar
  77. Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34(3), 114–123.CrossRefPubMedGoogle Scholar
  78. Shuai, L., & Elhilali, M. (2014). Task-dependent neural representations of salient events in dynamic auditory scenes. Frontiers in Neuroscience, 8, 203.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Simon, J. Z., Depireux, D. A., Klein, D. J., Fritz, J. B., & Shamma, S. A. (2007). Temporal symmetry in primary auditory cortex: Implications for cortical connectivity. Neural Computation, 19(3), 583–638.CrossRefPubMedGoogle Scholar
  80. Snyder, J. S., Alain, C., & Picton, T. W. (2006). Effects of attention on neuroelectric correlates of auditory stream segregation. Journal of Cognitive Neuroscience, 18(1), 1–13.CrossRefPubMedGoogle Scholar
  81. Snyder, J. S., Gregg, M. K., Weintraub, D. M., & Alain, C. (2012). Attention, awareness, and the perception of auditory scenes. Frontiers in Psychology, 3, 15.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Stecker, G. C., Harrington, I. A., & Middlebrooks, J. C. (2005). Location coding by opponent neural populations in the auditory cortex. PLoS Biology, 3(3), e78.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sussman, E. S., Chen, S., Sussman-Fort, J., & Dinces, E. (2014). The five myths of MMN: Redefining how to use MMN in basic and clinical research. Brain Topography, 27(4), 553–564.CrossRefPubMedGoogle Scholar
  84. Szalardy, O., Bohm, T. M., Bendixen, A., & Winkler, I. (2013). Event-related potential correlates of sound organization: Early sensory and late cognitive effects. Biological Psychology, 93(1), 97–104.CrossRefPubMedGoogle Scholar
  85. Teki, S., Chait, M., Kumar, S., von Kriegstein, K., & Griffiths, T. D. (2011). Brain bases for auditory stimulus-driven figure-ground segregation. The Journal of Neuroscience, 31(1), 164–171.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Thompson, S. K., von Kriegstein, K., Deane-Pratt, A., Marquardt, T., et al. (2006). Representation of interaural time delay in the human auditory midbrain. Nature Neuroscience, 9(9), 1096–1098.CrossRefPubMedGoogle Scholar
  87. van Noorden, L. P. A. S. (1975). Temporal coherence in the perception of tone sequences. PhD dissertation, Eindhoven University of Technology.Google Scholar
  88. von Kriegstein, K., Griffiths, T. D., Thompson, S. K., & McAlpine, D. (2008). Responses to interaural time delay in human cortex. Journal of Neurophysiology, 100(5), 2712–2718.CrossRefGoogle Scholar
  89. Wiegand, K., & Gutschalk, A. (2012). Correlates of perceptual awareness in human primary auditory cortex revealed by an informational masking experiment. NeuroImage, 61(1), 62–69.CrossRefPubMedGoogle Scholar
  90. Wilson, E. C., Melcher, J. R., Micheyl, C., Gutschalk, A., & Oxenham, A. J. (2007). Cortical FMRI activation to sequences of tones alternating in frequency: Relationship to perceived rate and streaming. Journal of Neurophysiology, 97(3), 2230–2238.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Xiang, J., Simon, J., & Elhilali, M. (2010). Competing streams at the cocktail party: Exploring the mechanisms of attention and temporal integration. The Journal of Neuroscience, 30(36), 12084–12093.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zion Golumbic, E. M., Ding, N., Bickel, S., Lakatos, P., et al. (2013). Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron, 77(5), 980–991.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Electrical & Computer Engineering, Department of Biology, Institute of Systems ResearchUniversity of MarylandCollege ParkUSA

Personalised recommendations