Advertisement

Auditory Object Formation and Selection

  • Barbara Shinn-CunninghamEmail author
  • Virginia Best
  • Adrian K. C. Lee
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 60)

Abstract

Most normal-hearing listeners can understand a conversational partner in an everyday setting with an ease that is unmatched by any computational algorithm available today. This ability to reliably extract meaning from a sound source in a mixture of competing sources relies on the fact that natural, meaningful sounds have structure in both time and frequency. Such structure supports two processes that enable humans and animals to solve the cocktail party problem: auditory object formation and auditory object selection. These processes, which are closely intertwined and difficult to isolate, are linked to previous work on auditory scene analysis and auditory attention, respectively. This chapter considers how the brain may implement object formation and object selection. Specifically, the chapter focuses on how different regions of the brain cooperate to isolate the neural representation of sound coming from a source of interest and enhance it while suppressing the responses to distracting or unimportant sounds in a sound mixture.

Keywords

Auditory grouping Auditory streaming Cocktail party Energetic masking Informational masking Scene analysis Selective attention 

Notes

Compliance with Ethics Requirements

Barbara Shinn-Cunningham has no conflicts of interest.

Virginia Best has no conflicts of interest.

Adrian K. C. Lee has no conflicts of interest.

References

  1. Alain, C., Arnott, S. R., & Picton, T. W. (2001). Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 27(5), 1072–1089.PubMedGoogle Scholar
  2. Alain, C., & Woods, D. L. (1997). Attention modulates auditory pattern memory as indexed by event-related brain potentials. Psychophysiology, 34(5), 534–546.PubMedCrossRefGoogle Scholar
  3. Alho, K., Salmi, J., Koistinen, S., Salonen, O., & Rinne, T. (2015). Top-down controlled and bottom-up triggered orienting of auditory attention to pitch activate overlapping brain networks. Brain Research, 1626, 136–145.PubMedCrossRefGoogle Scholar
  4. Arbogast, T. L., & Kidd, G., Jr. (2000). Evidence for spatial tuning in informational masking using the probe-signal method. The Journal of the Acoustical Society of America, 108(4), 1803–1810.PubMedCrossRefGoogle Scholar
  5. Benard, M. R., Mensink, J. S., & Başkent, D. (2014). Individual differences in top-down restoration of interrupted speech: Links to linguistic and cognitive abilities. The Journal of the Acoustical Society of America, 135, EL88–94.Google Scholar
  6. Best, V., Gallun, F. J., Carlile, S., & Shinn-Cunningham, B. G. (2007a). Binaural interference and auditory grouping. The Journal of the Acoustical Society of America, 121(2), 1070–1076.PubMedCrossRefGoogle Scholar
  7. Best, V., Gallun, F. J., Ihlefeld, A., & Shinn-Cunningham, B. G. (2006). The influence of spatial separation on divided listening. The Journal of the Acoustical Society of America, 120(3), 1506–1516.PubMedCrossRefGoogle Scholar
  8. Best, V., Ozmeral, E. J., Kopco, N., & Shinn-Cunningham, B. G. (2008). Object continuity enhances selective auditory attention. Proceedings of the National Academy of Sciences of the USA, 105(35), 13174–13178.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Best, V., Ozmeral, E. J., & Shinn-Cunningham, B. G. (2007b). Visually-guided attention enhances target identification in a complex auditory scene. Journal of the Association for Research in Otolaryngology, 8(2), 294–304.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bharadwaj, H. M., Lee, A. K. C., & Shinn-Cunningham, B. G. (2014). Measuring auditory selective attention using frequency tagging. Frontiers in Integrative Neuroscience, 8, 6.Google Scholar
  11. Bharadwaj, H. M., Masud, S., Mehraei, G., Verhulst, S., & Shinn-Cunningham, B. G. (2015). Individual differences reveal correlates of hidden hearing deficits. The Journal of Neuroscience, 35(5), 2161–2172.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.PubMedCrossRefGoogle Scholar
  13. Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.Google Scholar
  14. Bressler, S., Masud, S., Bharadwaj, H., & Shinn-Cunningham, B. (2014). Bottom-up influences of voice continuity in focusing selective auditory attention. Psychological Research, 78(3), 349–360.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bressler, S. L., Tang, W., Sylvester, C. M., Shulman, G. L., & Corbetta, M. (2008). Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. The Journal of Neuroscience, 28(40), 10056–10061.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Broadbent, D. E. (1954). The role of auditory localization in attention and memory span. Journal of Experimental Psychology, 47(3), 191–196.PubMedCrossRefGoogle Scholar
  17. Broadbent, D. E. (1956). Successive responses to simultaneous stimuli. Quarterly Journal of Experimental Psychology, 145–152.Google Scholar
  18. Broadbent, D. E. (1957). Immediate memory and simultaneous stimuli. Quarterly Journal of Experimental Psychology, 9, 1–11.CrossRefGoogle Scholar
  19. Broadbent, D. E. (1958). Perception and communication. New York: Pergamon Press.CrossRefGoogle Scholar
  20. Brungart, D. S. (2001). Informational and energetic masking effects in the perception of two simultaneous talkers. The Journal of the Acoustical Society of America, 109(3), 1101–1109.PubMedCrossRefGoogle Scholar
  21. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.PubMedCrossRefGoogle Scholar
  22. Carlyon, R. P. (2004). How the brain separates sounds. Trends in Cognitive Sciences, 8(10), 465–471.PubMedCrossRefGoogle Scholar
  23. Carlyon, R. P., Plack, C. J., Fantini, D. A., & Cusack, R. (2003). Cross-modal and non-sensory influences on auditory streaming. Perception, 32(11), 1393–1402.PubMedCrossRefGoogle Scholar
  24. Chait, M., de Cheveigne, A., Poeppel, D., & Simon, J. Z. (2010). Neural dynamics of attending and ignoring in human auditory cortex. Neuropsychologia, 48(11), 3262–3271.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America, 25, 975–979.CrossRefGoogle Scholar
  26. Cherry, E. C., & Taylor, W. K. (1954). Some further experiments upon the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America, 26, 554–559.CrossRefGoogle Scholar
  27. Choi, I., Rajaram, S., Varghese, L. A., & Shinn-Cunningham, B. G. (2013). Quantifying attentional modulation of auditory-evoked cortical responses from single-trial electroencephalography. Frontiers in Human Neuroscience, 7, 115.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Conway, A. R., Cowan, N., & Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity. Psychonomic Bulletin Review, 8(2), 331–335.PubMedCrossRefGoogle Scholar
  29. Cooke, M. (2006). A glimpsing model of speech perception in noise. The Journal of the Acoustical Society of America, 119(3), 1562–1573.PubMedCrossRefGoogle Scholar
  30. Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.PubMedCrossRefGoogle Scholar
  32. Culling, J. F., & Darwin, C. J. (1993a). Perceptual separation of simultaneous vowels: Within and across-formant grouping by F0. The Journal of the Acoustical Society of America, 93(6), 3454–3467.PubMedCrossRefGoogle Scholar
  33. Culling, J. F., & Darwin, C. J. (1993b). The role of timbre in the segregation of simultaneous voices with intersecting F0 contours. Perception and Psychophysics, 54(3), 303–309.PubMedCrossRefGoogle Scholar
  34. Culling, J. F., Hodder, K. I., & Toh, C. Y. (2003). Effects of reverberation on perceptual segregation of competing voices. The Journal of the Acoustical Society of America, 114(5), 2871–2876.PubMedCrossRefGoogle Scholar
  35. Culling, J. F., Summerfield, Q., & Marshall, D. H. (1994). Effects of simulated reverberation on the use of binaural cues and fundamental-frequency differences for separating concurrent vowels. Speech Communication, 14, 71–95.CrossRefGoogle Scholar
  36. Cusack, R., Deeks, J., Aikman, G., & Carlyon, R. P. (2004). Effects of location, frequency region, and time course of selective attention on auditory scene analysis. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 643–656.PubMedGoogle Scholar
  37. Cusack, R., & Roberts, B. (2000). Effects of differences in timbre on sequential grouping. Perception and Psychophysics, 62(5), 1112–1120.PubMedCrossRefGoogle Scholar
  38. Dalton, P., & Fraenkel, N. (2012). Gorillas we have missed: Sustained inattentional deafness for dynamic events. Cognition, 124(3), 367–372.PubMedCrossRefGoogle Scholar
  39. Dannenbring, G. L. (1976). Perceived auditory continuity with alternately rising and falling frequency transitions. Canadian Journal of Psychology, 30(2), 99–114.PubMedCrossRefGoogle Scholar
  40. Darwin, C. J. (2005). Simultaneous grouping and auditory continuity. Perception and Psychophysics, 67(8), 1384–1390.PubMedCrossRefGoogle Scholar
  41. Darwin, C. J. (2006). Contributions of binaural information to the separation of different sound sources. International Journal of Audiology, 45(Supplement 1), S20–S24.PubMedCrossRefGoogle Scholar
  42. Darwin, C. J., Brungart, D. S., & Simpson, B. D. (2003). Effects of fundamental frequency and vocal-tract length changes on attention to one of two simultaneous talkers. The Journal of the Acoustical Society of America, 114(5), 2913–2922.PubMedCrossRefGoogle Scholar
  43. Darwin, C. J., & Carlyon, R. P. (1995). Auditory grouping. In B. C. J. Moore (Ed.), Hearing (pp. 387–424). San Diego: Academic Press.CrossRefGoogle Scholar
  44. Darwin, C. J., & Ciocca, V. (1992). Grouping in pitch perception: Effects of onset asynchrony and ear of presentation of a mistuned component. The Journal of the Acoustical Society of America, 91(6), 3381–3390.PubMedCrossRefGoogle Scholar
  45. Darwin, C. J., & Hukin, R. W. (1997). Perceptual segregation of a harmonic from a vowel by interaural time difference and frequency proximity. The Journal of the Acoustical Society of America, 102(4), 2316–2324.PubMedCrossRefGoogle Scholar
  46. Darwin, C. J., & Hukin, R. W. (2000). Effects of reverberation on spatial, prosodic, and vocal-tract size cues to selective attention. The Journal of the Acoustical Society of America, 108(1), 335–342.PubMedCrossRefGoogle Scholar
  47. Darwin, C. J., Hukin, R. W., & al-Khatib, B. Y. (1995). Grouping in pitch perception: Evidence for sequential constraints. The Journal of the Acoustical Society of America, 98(2 Pt 1), 880–885.Google Scholar
  48. Darwin, C. J., & Sutherland, N. S. (1984). Grouping frequency components of vowels: When is a harmonic not a harmonic? Quarterly Journal of Experimental Psychology, 36A, 193–208.CrossRefGoogle Scholar
  49. de Cheveigne, A., McAdams, S., & Marin, C. M. H. (1997). Concurrent vowel identification. II. Effects of phase, harmonicity, and task. The Journal of the Acoustical Society of America, 101, 2848–2856.CrossRefGoogle Scholar
  50. De Sanctis, P., Ritter, W., Molholm, S., Kelly, S. P., & Foxe, J. J. (2008). Auditory scene analysis: The interaction of stimulation rate and frequency separation on pre-attentive grouping. European Journal of Neuroscience, 27(5), 1271–1276.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review Neuroscience, 18, 193–222.CrossRefGoogle Scholar
  52. Devergie, A., Grimault, N., Tillmann, B., & Berthommier, F. (2010). Effect of rhythmic attention on the segregation of interleaved melodies. The Journal of the Acoustical Society of America, 128(1), EL1–7.Google Scholar
  53. Ding, N., & Simon, J. Z. (2012a). Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. Journal of Neurophysiology, 107(1), 78–89.PubMedCrossRefGoogle Scholar
  54. Ding, N., & Simon, J. Z. (2012b). Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences of the USA, 109(29), 11854–11859.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172–179.PubMedCrossRefGoogle Scholar
  56. Elhilali, M., Ma, L., Micheyl, C., Oxenham, A. J., & Shamma, S. A. (2009a). Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron, 61(2), 317–329.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Elhilali, M., Xiang, J., Shamma, S. A., & Simon, J. Z. (2009b). Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene. PLoS Biology, 7(6), e1000129.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2(10), 704–716.PubMedCrossRefGoogle Scholar
  59. Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5(1), 16–25.PubMedCrossRefGoogle Scholar
  60. Eramudugolla, R., Irvine, D. R., McAnally, K. I., Martin, R. L., & Mattingley, J. B. (2005). Directed attention eliminates ‘change deafness’ in complex auditory scenes. Current Biology, 15(12), 1108–1113.PubMedCrossRefGoogle Scholar
  61. Feldman, J. (2003). What is a visual object? Trends in Cognitive Sciences, 7(6), 252–256.PubMedCrossRefGoogle Scholar
  62. Foxe, J. J., & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers of Psychology, 2, 154.CrossRefGoogle Scholar
  63. Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Auditory attention: Focusing the searchlight on sound. Current Opinion in Neurobiology, 17(4), 437–455.PubMedCrossRefGoogle Scholar
  64. Fujisaki, W., & Nishida, S. (2005). Temporal frequency characteristics of synchrony-asynchrony discrimination of audio-visual signals. Experimental Brain Research, 166(3–4), 455–464.PubMedCrossRefGoogle Scholar
  65. Gallun, F. J., Mason, C. R., & Kidd, G., Jr. (2007). The ability to listen with independent ears. The Journal of the Acoustical Society of America, 122(5), 2814–2825.PubMedCrossRefGoogle Scholar
  66. Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511–517.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Goldberg, M. E., & Bruce, C. J. (1985). Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vision Research, 25(3), 471–481.PubMedCrossRefGoogle Scholar
  68. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.PubMedCrossRefGoogle Scholar
  69. Greenberg, S., Carvey, H., Hitchcock, L., & Chang, S. (2003). Temporal properties of spontaneous speech—A syllable-centric perspective. Journal of Phonetics, 31(3–4), 465–485.CrossRefGoogle Scholar
  70. Greenberg, G. Z., & Larkin, W. D. (1968). Frequency-response characteristic of auditory observers detecting signals of a single frequency in noise: The probe-signal method. The Journal of the Acoustical Society of America, 44(6), 1513–1523.PubMedCrossRefGoogle Scholar
  71. Gregoriou, G. G., Gotts, S. J., Zhou, H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931), 1207–1210.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Griffiths, T. D., & Warren, J. D. (2004). What is an auditory object? Nature Reviews Neuroscience, 5(11), 887–892.PubMedCrossRefGoogle Scholar
  73. Grimault, N., Bacon, S. P., & Micheyl, C. (2002). Auditory stream segregation on the basis of amplitude-modulation rate. The Journal of the Acoustical Society of America, 111(3), 1340–1348.PubMedCrossRefGoogle Scholar
  74. Hall, J. W., 3rd, & Grose, J. H. (1990). Comodulation masking release and auditory grouping. The Journal of the Acoustical Society of America, 88(1), 119–125.PubMedCrossRefGoogle Scholar
  75. Heller, L. M., & Richards, V. M. (2010). Binaural interference in lateralization thresholds for interaural time and level differences. The Journal of the Acoustical Society of America, 128(1), 310–319.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Heller, L. M., & Trahiotis, C. (1996). Extents of laterality and binaural interference effects. The Journal of the Acoustical Society of America, 99(6), 3632–3637.PubMedCrossRefGoogle Scholar
  77. Hill, K. T., & Miller, L. M. (2010). Auditory attentional control and selection during cocktail party listening. Cerebral Cortex, 20(3), 583–590.PubMedCrossRefGoogle Scholar
  78. Hukin, R. W., & Darwin, C. J. (1995). Comparison of the effect of onset asynchrony on auditory grouping in pitch matching and vowel identification. Perception and Psychophysics, 57(2), 191–196.PubMedCrossRefGoogle Scholar
  79. Hupe, J. M., Joffo, L. M., & Pressnitzer, D. (2008). Bistability for audiovisual stimuli: Perceptual decision is modality specific. Journal of Vision, 8(7), 11–15.Google Scholar
  80. Ihlefeld, A., & Shinn-Cunningham, B. G. (2011). Effect of source spectrum on sound localization in an everyday reverberant room. The Journal of the Acoustical Society of America, 130(1), 324–333.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jones, M. R., Kidd, G., & Wetzel, R. (1981). Evidence for rhythmic attention. Journal of Experimental Psychology: Human Perception and Performance, 7(5), 1059–1073.PubMedGoogle Scholar
  82. Kastner, S., & Ungerleider, L. G. (2001). The neural basis of biased competition in human visual cortex. Neuropsychologia, 39(12), 1263–1276.PubMedCrossRefGoogle Scholar
  83. Kaya, E. M., & Elhilali, M. (2014). Investigating bottom-up auditory attention. Frontiers in Human Neuroscience, 8(327), 1–12.Google Scholar
  84. Kayser, C., Montemurro, M. A., Logothetis, N. K., & Panzeri, S. (2009). Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron, 61(4), 597–608.PubMedCrossRefGoogle Scholar
  85. Kerlin, J. R., Shahin, A. J., & Miller, L. M. (2010). Attentional gain control of ongoing cortical speech representations in a “cocktail party”. The Journal of Neuroscience, 30(2), 620–628.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kidd, G., Jr., Arbogast, T. L., Mason, C. R., & Gallun, F. J. (2005a). The advantage of knowing where to listen. The Journal of the Acoustical Society of America, 118(6), 3804–3815.PubMedCrossRefGoogle Scholar
  87. Kidd, G., Mason, C. R., Brughera, A., & Hartmann, W. M. (2005b). The role of reverberation in release from masking due to spatial separation of sources for speech identification. Acta Acustica united with Acustica, 91(3), 526–536.Google Scholar
  88. Kidd, G., Jr., Mason, C. R., Richards, V. M., Gallun, F. J., & Durlach, N. I. (2008). Informational Masking. In W. Yost, A. Popper, & R. Fay (Eds.), Auditory perception of sound sources (pp. 143–189). New York: Springer Science+Business Media.Google Scholar
  89. Kitterick, P. T., Clarke, E., O’Shea, C., Seymour, J., & Summerfield, A. Q. (2013). Target identification using relative level in multi-talker listening. The Journal of the Acoustical Society of America, 133(5), 2899–2909.PubMedCrossRefGoogle Scholar
  90. Kong, L., Michalka, S. W., Rosen, M. L., Sheremata, S. L., et al. (2014). Auditory spatial attention representations in the human cerebral cortex. Cerebral Cortex, 24(3), 773–784.PubMedCrossRefGoogle Scholar
  91. Koreimann, S., Gula, B., & Vitouch, O. (2014). Inattentional deafness in music. Psychological Research, 78, 304–312.PubMedCrossRefGoogle Scholar
  92. Lachter, J., Forster, K. I., & Ruthruff, E. (2004). Forty-five years after Broadbent (1958): Still no identification without attention. Psychological Review, 111(4), 880–913.PubMedCrossRefGoogle Scholar
  93. Lakatos, P., Musacchia, G., O’Connel, M. N., Falchier, A. Y., Javitt, D. C., & Schroeder, C. E. (2013). The spectrotemporal filter mechanism of auditory selective attention. Neuron, 77(4), 750–761.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lalor, E. C., & Foxe, J. J. (2010). Neural responses to uninterrupted natural speech can be extracted with precise temporal resolution. European Journal of Neuroscience, 31(1), 189–193.PubMedCrossRefGoogle Scholar
  95. Lalor, E. C., Power, A. J., Reilly, R. B., & Foxe, J. J. (2009). Resolving precise temporal processing properties of the auditory system using continuous stimuli. Journal of Neurophysiology, 102(1), 349–359.PubMedCrossRefGoogle Scholar
  96. Larson, E., & Lee, A. K. C. (2013). Influence of preparation time and pitch separation in switching of auditory attention between streams. The Journal of the Acoustical Society of America, 134(2), EL165–171.Google Scholar
  97. Larson, E., & Lee, A. K. C. (2014). Switching auditory attention using spatial and non-spatial features recruits different cortical networks. NeuroImage, 84, 681–687.PubMedCrossRefGoogle Scholar
  98. Lawo, V., & Koch, I. (2014). Dissociable effects of auditory attention switching and stimulus–response compatibility. Psychological Research, 78, 379–386.PubMedCrossRefGoogle Scholar
  99. Lee, A. K. C., Rajaram, S., Xia, J., Bharadwaj, H., et al. (2013). Auditory selective attention reveals preparatory activity in different cortical regions for selection based on source location and source pitch. Frontiers in Neuroscience, 6, 190.Google Scholar
  100. Lepisto, T., Kuitunen, A., Sussman, E., Saalasti, S., et al. (2009). Auditory stream segregation in children with Asperger syndrome. Biological Psychology, 82(3), 301–307.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Loizou, P. C., Hu, Y., Litovsky, R., Yu, G., et al. (2009). Speech recognition by bilateral cochlear implant users in a cocktail-party setting. The Journal of the Acoustical Society of America, 125(1), 372–383.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Macken, W. J., Tremblay, S., Houghton, R. J., Nicholls, A. P., & Jones, D. M. (2003). Does auditory streaming require attention? Evidence from attentional selectivity in short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 43–51.PubMedGoogle Scholar
  103. Maddox, R. K., Atilgan, H., Bizley, J. K., & Lee, A. K. (2015). Auditory selective attention is enhanced by a task-irrelevant temporally coherent visual stimulus in human listeners. Elife, 4. doi: 10.7554/eLife.04995
  104. Maddox, R. K., & Shinn-Cunningham, B. G. (2012). Influence of task-relevant and task-irrelevant feature continuity on selective auditory attention. Journal of the Association for Research in Otolaryngology, 13(1), 119–129.PubMedCrossRefGoogle Scholar
  105. Marrocco, R. T., & Davidson, M. C. (1998). Neurochemistry of attention. In R. Parasuraman (Ed.), The attentive brain (Vol. xii, pp. 35–50). Cambridge, MA: MIT Press.Google Scholar
  106. McCloy, D. R., & Lee, A. K. (2015). Auditory attention strategy depends on target linguistic properties and spatial configuration. The Journal of the Acoustical Society of America, 138(1), 97–114.PubMedPubMedCentralCrossRefGoogle Scholar
  107. McDermott, J. H., Wrobleski, D., & Oxenham, A. J. (2011). Recovering sound sources from embedded repetition. Proceedings of the National Academy of Sciences of the USA, 108, 1188–1193.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485(7397), 233–236.PubMedCrossRefGoogle Scholar
  109. Michalka, S. W., Kong, L., Rosen, M. L., Shinn-Cunningham, B. G., & Somers, D. C. (2015). Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks. Neuron, 87(4), 882–892.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Michalka, S. W., Rosen, M. L., Kong, L., Shinn-Cunningham, B. G., & Somers, D. C. (2016). Auditory spatial coding flexibly recruits anterior, but not posterior, visuotopic parietal cortex. Cerebral Cortex, 26(3), 1302–1308.PubMedCrossRefGoogle Scholar
  111. Micheyl, C., Tian, B., Carlyon, R. P., & Rauschecker, J. P. (2005). Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron, 48(1), 139–148.PubMedCrossRefGoogle Scholar
  112. Molholm, S., Martinez, A., Shpaner, M., & Foxe, J. J. (2007). Object-based attention is multisensory: Co-activation of an object’s representations in ignored sensory modalities. European Journal of Neuroscience, 26(2), 499–509.PubMedCrossRefGoogle Scholar
  113. Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology, 11, 56–60.CrossRefGoogle Scholar
  114. Naatanen, R., Teder, W., Alho, K., & Lavikainen, J. (1992). Auditory attention and selective input modulation: A topographical ERP study. NeuroReport, 3(6), 493–496.PubMedCrossRefGoogle Scholar
  115. Noyce, A. L., Cestero, N., Shinn-Cunningham, B. G., & Somers, D. C. (2016). Short-term memory stores organized by information domain. Attention, Perception, & Psychophysics, 78(30), 960–970.Google Scholar
  116. O’Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., et al. (2014). Attentional selection in a cocktail party environment can be decoded from single-trial EEG. Cerebral Cortex, 25(7), 1697–1706.PubMedPubMedCentralGoogle Scholar
  117. O’Sullivan, J. A., Shamma, S. A., & Lalor, E. C. (2015). Evidence for neural computations of temporal coherence in an auditory scene and their enhancement during active listening. The Journal of Neuroscience, 35(18), 7256–7263.PubMedCrossRefGoogle Scholar
  118. Osher, D., Tobyne, S., Congden, K., Michalka, S., & Somers, D. (2015). Structural and functional connectivity of visual and auditory attentional networks: Insights from the Human Connectome Project. Journal of Vision, 15(12), 223.CrossRefGoogle Scholar
  119. Oxenham, A. J. (2008). Pitch perception and auditory stream segregation: Implications for hearing loss and cochlear implants. Trends in Amplification, 12(4), 316–331.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Oxenham, A. J. (2012). Pitch perception. The Journal of Neuroscience, 32(39), 13335–13338.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Oxenham, A. J., & Dau, T. (2001). Modulation detection interference: Effects of concurrent and sequential streaming. The Journal of the Acoustical Society of America, 110(1), 402–408.PubMedCrossRefGoogle Scholar
  122. Palomaki, K. J., Brown, G. J., & Wang, D. L. (2004). A binaural processor for missing data speech recognition in the presence of noise and small-room reverberation. Speech Communication, 43(4), 361–378.CrossRefGoogle Scholar
  123. Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., et al. (2012). Reconstructing speech from human auditory cortex. PLoS Biology, 10(1), e1001251.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Pavani, F., & Turatto, M. (2008). Change perception in complex auditory scenes. Perception and Psychophysics, 70(4), 619–629.PubMedCrossRefGoogle Scholar
  125. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Plack, C. J., Barker, D., & Prendergast, G. (2014). Perceptual consequences of “hidden” hearing loss. Trends in Hearing, 18. doi: 10.1177/2331216514550621
  127. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review Neuroscience, 13, 25–42.CrossRefGoogle Scholar
  128. Power, A. J., Foxe, J. J., Forde, E. J., Reilly, R. B., & Lalor, E. C. (2012). At what time is the cocktail party? A late locus of selective attention to natural speech. European Journal of Neuroscience, 35(9), 1497–1503.PubMedCrossRefGoogle Scholar
  129. Ptak, R. (2012). The frontoparietal attention network of the human brain: Action, saliency, and a priority map of the environment. Neuroscientist, 18(5), 502–515.PubMedCrossRefGoogle Scholar
  130. Pugh, K. R., Offywitz, B. A., Shaywitz, S. E., Fulbright, R. K., et al. (1996). Auditory selective attention: An fMRI investigation. NeuroImage, 4(3 Pt 1), 159–173.PubMedCrossRefGoogle Scholar
  131. Ruggles, D., Bharadwaj, H., & Shinn-Cunningham, B. G. (2011). Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proceedings of the National Academy of Sciences of the USA, 108(37), 15516–15521.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Samuel, A. G. (1981). The role of bottom-up confirmation in the phonemic restoration illusion. Journal of Experimental Psychology: Human Perception and Performance, 7(5), 1124–1131.PubMedGoogle Scholar
  133. Schaal, N. K., Williamson, V. J., & Banissy, M. J. (2013). Anodal transcranial direct current stimulation over the supramarginal gyrus facilitates pitch memory. European Journal of Neuroscience, 38(10), 3513–3518.PubMedCrossRefGoogle Scholar
  134. Scharf, B., Quigley, S., Aoki, C., Peachey, N., & Reeves, A. (1987). Focused auditory attention and frequency selectivity. Perception and Psychophysics, 42(3), 215–223.PubMedCrossRefGoogle Scholar
  135. Schwartz, A., McDermott, J. H., & Shinn-Cunningham, B. (2012). Spatial cues alone produce inaccurate sound segregation: The effect of interaural time differences. The Journal of the Acoustical Society of America, 132(1), 357–368.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Serences, J. T., & Yantis, S. (2006a). Selective visual attention and perceptual coherence. Trends in Cognitive Sciences, 10(1), 38–45.PubMedCrossRefGoogle Scholar
  137. Serences, J. T., & Yantis, S. (2006b). Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. Cerebral Cortex, 17(2), 284–293.PubMedCrossRefGoogle Scholar
  138. Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34(3), 114–123.PubMedCrossRefGoogle Scholar
  139. Shinn-Cunningham, B. G. (2008). Object-based auditory and visual attention. Trends in Cognitive Sciences, 12(5), 182–186.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Shinn-Cunningham, B. G., & Best, V. (2008). Selective attention in normal and impaired hearing. Trends in Amplification, 12(4), 283–299.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Shinn-Cunningham, B. G., Lee, A. K. C., & Oxenham, A. J. (2007). A sound element gets lost in perceptual competition. Proceedings of the National Academy of Sciences of the USA, 104(29), 12223–12227.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Shuai, L., & Elhilali, M. (2014). Task-dependent neural representations of salient events in dynamic auditory scenes. Frontiers in Neuroscience, 8(203), 1–11.Google Scholar
  143. Strauss, A., Wostmann, M., & Obleser, J. (2014). Cortical alpha oscillations as a tool for auditory selective inhibition. Frontiers in Human Neuroscience, 8, 350.PubMedPubMedCentralGoogle Scholar
  144. Sussman, E. S., Horvath, J., Winkler, I., & Orr, M. (2007). The role of attention in the formation of auditory streams. Perception and Psychophysics, 69(1), 136–152.PubMedCrossRefGoogle Scholar
  145. Tark, K. J., & Curtis, C. E. (2009). Persistent neural activity in the human frontal cortex when maintaining space that is off the map. Nature Neuroscience, 12(11), 1463–1468.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Teki, S., Chait, M., Kumar, S., Shamma, S., & Griffiths, T. D. (2013). Segregation of complex acoustic scenes based on temporal coherence. Elife, 2, e00699.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Terhardt, E. (1974). Pitch, consonance, and harmony. The Journal of the Acoustical Society of America, 55(5), 1061–1069.PubMedCrossRefGoogle Scholar
  148. Toscani, M., Marzi, T., Righi, S., Viggiano, M. P., & Baldassi, S. (2010). Alpha waves: A neural signature of visual suppression. Experimental Brain Research, 207(3–4), 213–219.PubMedCrossRefGoogle Scholar
  149. Treisman, A. M. (1960). Contextual cues in selective listening. Quarterly Journal of Experimental Psychology, 12, 157–167.CrossRefGoogle Scholar
  150. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.PubMedCrossRefGoogle Scholar
  151. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behaviour (pp. 549–586). Cambridge, MA: MIT Press.Google Scholar
  152. Varghese, L., Bharadwaj, H. M., & Shinn-Cunningham, B. G. (2015). Evidence against attentional state modulating scalp-recorded auditory brainstem steady-state responses. Brain Research, 1626, 146–164.PubMedCrossRefGoogle Scholar
  153. Varghese, L. A., Ozmeral, E. J., Best, V., & Shinn-Cunningham, B. G. (2012). How visual cues for when to listen aid selective auditory attention. Journal of the Association for Research in Otolaryngology, 13(3), 359–368.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Vines, B. W., Schnider, N. M., & Schlaug, G. (2006). Testing for causality with transcranial direct current stimulation: Pitch memory and the left supramarginal gyrus. NeuroReport, 17(10), 1047–1050.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Vliegen, J., Moore, B. C., & Oxenham, A. J. (1999). The role of spectral and periodicity cues in auditory stream segregation, measured using a temporal discrimination task. The Journal of the Acoustical Society of America, 106(2), 938–945.PubMedCrossRefGoogle Scholar
  156. von Békésy, G. (1960). Experiments in hearing (1989th ed.). New York: Acoustical Society of America Press.Google Scholar
  157. Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist, 20(2), 150–159.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Wardak, C., Ibos, G., Duhamel, J. R., & Olivier, E. (2006). Contribution of the monkey frontal eye field to covert visual attention. The Journal of Neuroscience, 26(16), 4228–4235.PubMedCrossRefGoogle Scholar
  159. Warren, R. M. (1970). Perceptual restoration of missing speech sounds. Science, 167(917), 392–393.PubMedCrossRefGoogle Scholar
  160. Warren, R. M., Wrightson, J. M., & Puretz, J. (1988). Illusory continuity of tonal and infratonal periodic sounds. The Journal of the Acoustical Society of America, 84(4), 1338–1342.PubMedCrossRefGoogle Scholar
  161. Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88, 638–667.PubMedCrossRefGoogle Scholar
  162. Whittingstall, K., & Logothetis, N. K. (2009). Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron, 64(2), 281–289.PubMedCrossRefGoogle Scholar
  163. Woldorff, M. G., Gallen, C. C., Hampson, S. A., Hillyard, S. A., et al. (1993). Modulation of early sensory processing in human auditory-cortex during auditory selective attention. Proceedings of the National Academy of Sciences of the USA, 90(18), 8722–8726.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Wood, N., & Cowan, N. (1995). The cocktail party phenomenon revisited: How frequent are attention shifts to one’s name in an irrelevant auditory channel? Journal of Experimental Psychology. Learning, Memory, and Cognition, 21(1), 255–260.PubMedCrossRefGoogle Scholar
  165. Woodruff, P. W., Benson, R. R., Bandettini, P. A., Kwong, K. K., et al. (1996). Modulation of auditory and visual cortex by selective attention is modality-dependent. NeuroReport, 7(12), 1909–1913.PubMedCrossRefGoogle Scholar
  166. Wright, B. A., & Fitzgerald, M. B. (2004). The time course of attention in a simple auditory detection task. Perception and Psychophysics, 66(3), 508–516.PubMedCrossRefGoogle Scholar
  167. Xiang, J., Simon, J., & Elhilali, M. (2010). Competing streams at the cocktail party: Exploring the mechanisms of attention and temporal integration. The Journal of Neuroscience, 30(36), 12084–12093.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Zion-Golumbic, E. M., Ding, N., Bickel, S., Lakatos, P., et al. (2013). Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron, 77(5), 980–991.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Zion-Golumbic, E., & Schroeder, C. E. (2012). Attention modulates ‘speech-tracking’ at a cocktail party. Trends in Cognitive Sciences, 16(7), 363–364.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Barbara Shinn-Cunningham
    • 1
    Email author
  • Virginia Best
    • 2
  • Adrian K. C. Lee
    • 3
  1. 1.Center for Research in Sensory Communication and Emerging Neural TechnologyBoston UniversityBostonUSA
  2. 2.Department of Speech, Language and Hearing SciencesBoston UniversityBostonUSA
  3. 3.Department of Speech and Hearing Sciences, Institute for Learning and Brain Sciences (I-LABS)University of WashingtonSeattleUSA

Personalised recommendations