Skip to main content

Integral Geometry and Tomography

  • Chapter
  • First Online:
Inverse Problems for Partial Differential Equations

Part of the book series: Applied Mathematical Sciences ((AMS,volume 127 ))

  • 3279 Accesses

Abstract

The problems of integral geometry are to determine a function given (weighted) integrals of this function over a “rich” family of manifolds. These problems are of importance in medical applications (tomography), and they are quite useful for dealing with inverse problems in hyperbolic differential equations (integrals of unknown coefficients over ellipsoids or lines can be obtained from the first terms of the asymptotic expansion of rapidly oscillating solutions and an information about first-arrival times of a wave). There has been significant progress in the classical Radon problem when manifolds are hyperplanes and the weight function is the unity; there are interesting results in the plane case when a family of curves is regular (resembling locally the family of straight lines) or in case of the family of straight lines with an arbitrary regular attenuation. Still there are many interesting open questions about the problem with local data and simultaneous recovery of density of a source and of attenuation. We give a brief review of this area, referring for more information to the books of Natterer [Nat] and Sharafutdinov [Sh].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anikonov, Y.E. The solvability of a certain problem of integral geometry. Mat. Sb., 101 (1976), 271–279.

    MathSciNet  Google Scholar 

  2. Anikonov, Y.E. Multidimensional Inverse and Ill-Posed Problems for Differential Equations. VSP, Netherlands, 1995.

    Book  MATH  Google Scholar 

  3. Arbuzov, E.V., Bukhgeim, A.L., Kazantsev, S.G. Two-dimensional tomography problems and the theory of A-analytic functions. Siberian Adv. Math., 8 (1998), 1–20.

    MathSciNet  Google Scholar 

  4. Bal, G. Inverse transport theory and applications. Inverse Problems, 25 (2009), 053001.

    Article  MathSciNet  MATH  Google Scholar 

  5. Beylkin, G. The inversion problem and applications of the generalized Radon transform. Comm. Pure Appl. Math., 37 (1984), 580–599.

    Article  MathSciNet  MATH  Google Scholar 

  6. Boman, J. An example of non-uniqueness for a generalized Radon transform. J. d’Analyse Math., 61 (1993), 395–401.

    Article  MathSciNet  MATH  Google Scholar 

  7. Boman, J., Strömberg, J.-O. Novikov’s Inversion Formula for the Attenuated Radon Transform-A New Approach. J. Geom. Anal., 14 (2004), 185–198.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bondarenko, A. The structure of fundamental solution of the time-independent transport equation. J. Math. Anal. Appl., 221 (1998), 430–451.

    Article  MathSciNet  MATH  Google Scholar 

  9. Choulli, M., Stefanov, P. Inverse scattering and inverse boundary value problems for the linear Boltzman equation. Comm. Part. Diff. Equat., 21 (1996), 763–785.

    Article  MATH  Google Scholar 

  10. Choulli, M., Stefanov, P. An inverse boundary value problem for the stationary transport equation. Osaka J. Math., 36(1999), 87–104.

    MathSciNet  MATH  Google Scholar 

  11. Cormack, A.M. Representation of a function by its line integrals, with some radiological applications. J. Appl. Phys., 34 (1963), 2722–2727.

    Article  MATH  Google Scholar 

  12. Deans, J. Gegenbauer transforms via the Radon Transform. SIAM J. Math. Anal., 10 (1979), 577–585.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ehrenpreis, L., Kuchment, P., Panchenko, A. Attenuated Radon transform and F. Joun’s equation I: Range conditions. Contemp. Math. AMS, 251 (2000), 173–188.

    Google Scholar 

  14. Friedrichs, K.O. Symmetric Positive Linear Differential Equations. Comm. Pure Appl. Math., 11 (1958), 333–418.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gelfand, I.M., Gindikin, S.G., Shapiro, Z.Ya. A local problem of integral geometry in a space of curves. Func. Anal. Appl., 139 (1980), 248–262.

    Google Scholar 

  16. Hörmander, L. The Analysis of Linear Partial Differential Operators. Springer Verlag, New York, 1983–1985.

    Google Scholar 

  17. Isakov, V., Sun, Z. Stability estimates for hyperbolic inverse problems with local boundary data. Inverse Problems, 8 (1992), 193–206.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lavrentiev, M.M., Bukhgeim, A. A certain class of operator equations of the first kind. Funct. Anal. Appl., 7 (1973), 290–298.

    Article  MathSciNet  Google Scholar 

  19. Miranda, C. Partial Differential Equations of Elliptic Type. Ergebn. Math., Band 2, Springer-Verlag, 1970.

    Google Scholar 

  20. Muhometov, R. The reconstruction problem of a two-dimensional Riemannian metric and integral geometry. Soviet Math. Dokl., 18 (1977), 32–35.

    MathSciNet  Google Scholar 

  21. Muhometov, R. On one problem of reconstruction of a two-dimensional Riemannian metric and integral geometry. Siber. Math. J., 22 (1981), 119–135.

    MathSciNet  Google Scholar 

  22. Natterer, F. The Mathematics of Computerized Tomography. Teubner, Stuttgart and Wiley, New York, 1986.

    MATH  Google Scholar 

  23. Novikov, R.G. An inversion formula for the attenuated X-ray transform. Ark. Math., 40 (2002), 145–167.

    Article  MATH  Google Scholar 

  24. Pestov, L., Uhlmann, G. Two-dimensional compact simple Riemannian manifolds are boundary distance rigid. Ann. Math., 161 (2005), 1089–1106.

    Article  MathSciNet  MATH  Google Scholar 

  25. Prilepko, A.I., Orlovskii, D.G., Vasin, I.A. Methods for solving inverse problems in mathematical physics. Marcel Dekker, New York-Basel, 2000.

    Google Scholar 

  26. Romanov, V.G.Inverse Problems of Mathematical Physics. VNU Science Press BV, Utrecht, 1987.

    Google Scholar 

  27. Sharafutdinov, V.A. Integral Geometry of Tensor Fields. VSP, Utrecht, 1994.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Isakov, V. (2017). Integral Geometry and Tomography. In: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol 127 . Springer, Cham. https://doi.org/10.1007/978-3-319-51658-5_7

Download citation

Publish with us

Policies and ethics