Skip to main content

Ill-Posed Problems and Regularization

  • Chapter
  • First Online:
Inverse Problems for Partial Differential Equations

Part of the book series: Applied Mathematical Sciences ((AMS,volume 127 ))

Abstract

In this chapter, we consider the equation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castro, A., Neuberger, J.W. A local inversion principle of the Nash-Moser type. SIAM J. Math. Anal., 33 (2001), 989–993.

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng, J., Yamamoto, M. One new strategy for a-priori choice of regularizing parameters in Tikhonov’s regularization Inverse Problems, 16 (2000), L31–L38.

    Google Scholar 

  3. Djatlov, G. Stability of an inverse problem for the Helmholtz equation. Sib. Math. J., 35 (1994), 583–601.

    MathSciNet  Google Scholar 

  4. Ekeland, I., Temam, R. Convex Analysis and Variational Problems. North-Holland, 1976.

    MATH  Google Scholar 

  5. Engl, H.W., Hanke, M., Neubauer, A. Regularization of Inverse Problems. Kluwer, Dordrecht, 1996.

    Book  MATH  Google Scholar 

  6. Hadamard, J. Lectures on Cauchy’s problem in linear partial differential equations. Dover, New York, 1953.

    MATH  Google Scholar 

  7. Hamilton, R. The inverse function theorem of Nash and Moser. Bull. AMS, 7 (1982), 65–222.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hohage, T. Logarithmic convergence rates of the iteratively regularized Gauss-Newton Method for an inverse potential and inverse scattering problem. Inverse Problems, 13 (1997), 1279–1299.

    Article  MathSciNet  MATH  Google Scholar 

  9. Hörmander, L. The Analysis of Linear Partial Differential Operators. Springer Verlag, New York, 1983–1985.

    Google Scholar 

  10. Isakov, V. Inverse Source Problems. Math. Surveys and Monographs Series, Vol. 34, AMS, Providence, R.I., 1990.

    Google Scholar 

  11. Ivanov, V.K., Vasin, V.V., Tanana, V.P. Theory of linear ill-posed problems and its applications. Nauka, Moscow, 1978.

    MATH  Google Scholar 

  12. Maslov, V.P. The existence of a solution to an ill-posed problem is equivalent to the convergence of a regularization process. Uspekhi Mat. Nauk, 23 (1968), 183–184.

    MathSciNet  Google Scholar 

  13. Tikhonov, A.N., Arsenin, V.Ya. Solutions of ill-posed problems. Transl. from Russian, John Wiley & Sons, New York - Toronto, 1977.

    Google Scholar 

  14. Yosida, K. Functional Analysis. Springer, 1980.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Isakov, V. (2017). Ill-Posed Problems and Regularization. In: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol 127 . Springer, Cham. https://doi.org/10.1007/978-3-319-51658-5_2

Download citation

Publish with us

Policies and ethics