Skip to main content

Design and Implementation of Data Usability Processor into an Automated Processing Chain for Optical Remote Sensing Data

  • Conference paper
  • First Online:
Book cover Leveraging Applications of Formal Methods, Verification, and Validation (ISoLA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 683))

Included in the following conference series:

  • 322 Accesses

Abstract

Diverse anthropogenic impacts will trigger worldwide environmental and social problems as e.g. climate change or social transformation processes. To observe these processes current information about status, direction of development and spatial or temporal dynamics of the processes are required. As the demand for current environmental information is increasing, earth observation (EO) and remote sensing (RS) techniques are moving to the focus of interest.

Generation and dissemination of RS based information products for e.g. time-critical applications can only be guaranteed by state-of-the-art concepts for data processing. This can be realized either by cumbersome and thus expensive interactive processing or by setting-up development and implementation of automated data processing infrastructure. In both cases information about data quality is important for the pre-processing and value adding processing steps. This contribution is focussed on a processor for automated data usability assessment which can be integrated into an automated processing chain adding information valuable for the user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cloud Cover Degree: Ratio of cloud pixels to total pixels of an unit (e.g. complete scene or quadrant of a scene).

  2. 2.

    Data usability: Combination of cloud cover and cloud distribution as well as data errors.

  3. 3.

    Quick-look data are preview images derived from original remote sensing data.

  4. 4.

    Metadata describe remote sensing data (e.g. satellite mission, orbit, track, frame).

  5. 5.

    LANDSAT-7/ETM + data receiving were stopped at the end of 2003 [7].

  6. 6.

    Meta-information: Contain further information on remote sensing data (e.g. satellite mission, orbit, track, frame number, etc.).

  7. 7.

    Assessment unit: scene, quadrant.

  8. 8.

    It has been shown that a threshold value of 10 is optimal because single zero-pixels are often caused by JPEG compression and were no data problem.

  9. 9.

    LANDSAT-handbook: chapter 9.2.4, Table 9.2 ETM+ Thermal Constants.

  10. 10.

    LANDSAT-handbook: chapter 9.2.4, Table 9.2 ETM+ Thermal Constants.

  11. 11.

    The term Satellite Projection as it is used here is no projection in real sense of the word. A LANDSAT data track is resulting of sequential lines along the satellite path. Each line is a central projection from the satellite position.

References

  1. EU. http://ec.europa.eu/enterprise/policies/space/gmes/. Accessed 06 Aug 2012

  2. Borg, E., Fichtelmann, B., Asche, H.: Assessment for remote sensing data: accuracy of interactive data quality interpretation. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6783, pp. 366–375. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21887-3_29

    Chapter  Google Scholar 

  3. Borg, E., Fichtelmann, B., Asche, H.: Cloud classification in JPEG-compressed remote sensing data (LANDSAT 7/ETM +). In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7334, pp. 347–357. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31075-1_26

    Chapter  Google Scholar 

  4. Lau, W.-L., Li, Z.-L., Lam, K.W.-K.: Effects of JPEG compression on image classification. Int. J. Remote Sens. 24(7), 1535–1544 (2003)

    Article  Google Scholar 

  5. Berutti, V.: LANDSAT 7 ESA Stations Network Report - Focus on Product Generation, LTWG 11, LANDSAT Technical Working Group Meeting (USGS/NASA), Canberra, Australia, 4–8 February, 21 p. (2002)

    Google Scholar 

  6. Bettac, H.-D., Reiniger, K., Brieß, K., Borg, E.: DLR/DFD presentation to the LGSOWG-30 Meeting, LGSOWG Meeting, Orlando, Florida, USA, 12–15 November, 22 p. (2001)

    Google Scholar 

  7. Pollex, J.: Oral communication (2011)

    Google Scholar 

  8. Schwarz, J., Bettac, H.D., Missling, K.-D.: Das DFD-Bodensegment für LANDSAT-7, DLR-Mitteilung 1999–2003, Mehl, D. (Eds.), Wessling, Germany, 20–21 October, pp. 49–56 (2000)

    Google Scholar 

  9. Biasutti, R., 2000, Cloud Cover Evaluation, LTWG 8, LANDSAT Technical Working Group Meeting (USGS/NASA), Ottawa, Canada, July 17–22, 10 p

    Google Scholar 

  10. Richter, R., Schläpfer, D.: Atmospheric/Topographic Correction for Satellite Imagery. DLR, Wessling (2011). DLR report DLR-IB 565-02/11

    Google Scholar 

  11. Huang, L., Li, Z.: Feature-based image registration using the shape context. Int. J. Remote Sens. 31(8), 2169–2177 (2010)

    Article  Google Scholar 

  12. Borg, E., Fichtelmann, B., Böttcher, J., Günther, A., 2009, Processing of remote sensing data, EP 1 637 838 B1

    Google Scholar 

  13. Borg, E., Fichtelmann, B.: Verfahren und Vorrichtung zum Feststellen einer Nutzbarkeit von Fernerkundungsdaten, DP 10 2004 024 595 B3 (2004)

    Google Scholar 

  14. NASA 2011. http://landsathandbook.gsfc.nasa.gov/. Accessed 06 Aug 2012

  15. Irish, R.: LANDSAT 7 Automatic Cloud Cover Assessment. In: Sylvia, D. (Eds.) Proceedings of SPIE (4049) Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, pp. 348–355 (2000)

    Google Scholar 

  16. Xu, Q., Wu, W.: ACRES Automatic Cloud Cover Assessment of LANDSAT 7 Images, Spatial Sciences Conference 2003 – Spatial Knowledge Without Boundaries Canberra, September 23–26, 10 p (2003)

    Google Scholar 

  17. Slater, P.N., Biggar, S.F., Holm, R.G., Jackson, R.D., Mao, Y., Moran, M.S., Palmer, J.M., Yuan, B.: Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sens. Environ. 22, 11–37 (1987)

    Article  Google Scholar 

  18. Markham, B.L., Barker, J.L.: Spectral characterization of the LANDSAT thematic mapper sensors. Int. J. Remote Sens. 6, 697–716 (1985)

    Article  Google Scholar 

  19. Chander, G., Markham, B.L., Helder, D.L.: Summary of current radiometric calibration coefficients for LANDSAT MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 113, 893–903 (2009). http://landportal.gsfc.nasa.gov/Documents/Landsat_Calibration_Summary.pdf. Accessed 20 Feb 2012

    Article  Google Scholar 

  20. Gurney, R.J., Hall, D.K.: Satellite-derived surface energy balance estimates in the Alaskan Sub-Arctic. J. Clim. Appl. Meteorol. 22(1), 115–125 (1983)

    Article  Google Scholar 

  21. MATHEMATIK, Kleine Enzyklopädie, Verlag Enzyklopädie, Leipzig (1970)

    Google Scholar 

  22. Johnson, D.B., Flament, P., Bernstein, R.L.: High-resolution satellite imagery for mesoscale meteorological studies. Bull. Am. Meteorol. Soc. 75, 5–34 (1994)

    Article  Google Scholar 

  23. Wu, Z.-J., McAvaney, B.: Sampling methods for climate model calculated brightness temperatures. BMRC Research Report No. 117, Bureau of Meteorology, Australia (2005)

    Google Scholar 

  24. Ignatov, A., Lazlo, I., Harrod, E.D., Kidwell, K.B., Goodrum, G.P.: Equator crossing times for NOAA, ERS and EOS sun-synchronous satellites. Int. J. Remote Sens. 25, 5255–5266 (2004)

    Article  Google Scholar 

  25. Bush, K.A., Smith, G.L., Young, D.F.: The NOAA-9 earth radiation budget experiment wide field-of-view data set. In: 10th Conference on Atmospheric Radiation, June 1999, NASA 1999 Technical Docs (1999)

    Google Scholar 

  26. Duffett-Smith, P.: Practical Astronomy with Your Calculator, 3rd edn. Cambridge University Press, Port Melbourne, Cambridge, Madrid) (1988)

    MATH  Google Scholar 

  27. Analytical Graphics, Inc. http://www.agi.com/

  28. Fichtelmann, B., Borg, E., Kriegel, M.: Verfahren zur operationellen Bereitstellung von Zusatzdaten für die automatische Fernerkundungsdatenverarbeitung, 23. In: Salzburg, S. et al. (Eds.) AGIT-Symposium, pp. 12–20. Wichmann, Berlin, Offenbach (2011)

    Google Scholar 

  29. Lehmann, T., Oberschelp, W., Pelikan, E., Repges, R.: Bildverarbeitung für die Medizin-Grundlagen Modelle, Methoden, Anwendungen, p. 462. Springer, Heidelberg (1997)

    Book  Google Scholar 

  30. Haberäcker, P.: Praxis der digitalen Bildverarbeitung und Mustererkennung. Hanser, München (1995)

    Google Scholar 

  31. Fichtelmann, B., Borg, E.: A new self-learning algorithm for dynamic classification of water bodies. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7335, pp. 457–470. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31137-6_35

    Chapter  Google Scholar 

  32. Fichtelmann, B., Guenther, K.P., Borg, E.: Adaption of a self-learning algorithm for dynamic classification of water bodies to SPOT VEGETATION Data. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9158, pp. 177–192. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21410-8_14

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Berutti, Dr. Pitella, Dr. Biasutti (all European Space Agency) for the provided test data, for the constructive discussions, and the shown interest in our investigations. The authors wish to thanks E. Schwarz from the German Remote Date Center, Department of National Ground Segment Neustrelitz for his activities for determination of the actual equator crossing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fichtelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Borg, E., Fichtelmann, B., Fischer, C., Asche, H. (2016). Design and Implementation of Data Usability Processor into an Automated Processing Chain for Optical Remote Sensing Data. In: Lamprecht, AL. (eds) Leveraging Applications of Formal Methods, Verification, and Validation . ISoLA 2016. Communications in Computer and Information Science, vol 683. Springer, Cham. https://doi.org/10.1007/978-3-319-51641-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51641-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51640-0

  • Online ISBN: 978-3-319-51641-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics