Skip to main content

In Vitro Studies, Biosynthesis of Secondary Metabolites and Pharmacological Utility of Catharanthus roseus (L.) G. Don.: A Review

  • Chapter
  • First Online:
Book cover Catharanthus roseus

Abstract

Catharanthus roseus (L.) G. Don (formerly Vinca rosea L.) belongs to the family Apocynaceae, it has been used to control cancer, diabetes, malaria etc., by folklore and traditional medicinal herbalists of India over two millennia. It is one of the most studied legendary medicinal plants due to the presence of monoterpene indole alkaloids (MIAs) or terpenoid indole alkaloids (TIAs). The active constituents from above ground parts extract contain most well recognized invaluable anticancer drugs vinblastine and vincristine, some antifibrillic and hypertensive agents, whereas the root contains several bioactive drugs such as, ruabasine (ajmalicine), serpentine, vinceine, vincamine and reserpine. In this review, the botanical information, ethnobotanical significance, update in tissue culture, secondary metabolites biosynthesis, cellular compartmentation and their pharmacological properties discovered and proved in the past decades and their potential in further exploitation of C. roseus are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi SP, Abbasi ST, Khoharo K, Talpur HK, Siddiqui SM (2014) Blood glucose lowering effect of Catharanthus roseus in alloxan induced diabetic rats. Eur J Mol Biol Biochem 1:63–66

    Google Scholar 

  • Abou-Mandour AA, Fischer S, Czygan F (1979) Regeneration of intact plants from haploid and diploid callus cells of Catharanthus. Z Pflanzen Physiol Bot 91:83–88

    Article  Google Scholar 

  • Abraham DJ, Farnsworth NR (1969) Structure elucidation and chemistry of Cathranthus alkaloids III: structure of Leurosine, an active anticancer alkaloid. J Pharm Sci 58:694–698

    Article  CAS  PubMed  Google Scholar 

  • Aerts RJ, Alarco AM, Luca VD (1992) Auxins induce tryptophan decarboxylase activity in radicles of Catharanthus seedlings. Plant Physiol 100:1014–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aerts RJ, Gisi D, Carolis DE, Luca DV, Baumann TW (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5:635–643

    Article  CAS  Google Scholar 

  • Ahmad NH, Rahim RA, Mat I (2010) Catharanthus roseus aqueous extract is cytotoxic to jurkat leukaemic t-cells but induces the proliferation of normal peripheral blood mononuclear cells. Trop Life Sci Res 21:101–113

    PubMed  PubMed Central  Google Scholar 

  • Ahmed MF, Rao AS (2013) Comparative hepatoprotective activities of selected Indian medicinal plants. Glob J Med Res Pharma Drug Discov Toxicol Med 13(2):15–21

    Google Scholar 

  • Ahmed MF, Kazim SM, Ghori SS, Mehjabeen SR, Ahmed SM, Ibrahim AM (2010) Antidiabetic activity of Vinca rosea extracts in alloxan-induced diabetic rats. Int J Endocrinol 2010:841090

    Article  PubMed  PubMed Central  Google Scholar 

  • Akcam E, Yurekli AK (1995) Effect of different nutrient media and explant sources on callus induction of Catharanthus roseus L. (G). Don plants. Turk J Bot 19:569–572

    Google Scholar 

  • Akhila A (2007) Metabolic engineering of biosynthetic pathways leading to isoprenoids: mono- and sesquiterpenes in plastids and cytosol. J Plant Interact 2:1742–9153

    Article  CAS  Google Scholar 

  • Akimoto C, Aoyagi H, Tanaka H (1999) Endogenous elicitor-like effect of alginate on physiological activities of plant cells. Appl Microbiol Biotechnol 52:429–436

    Article  CAS  Google Scholar 

  • Alaguchamy N, Jayakumararaj R (2015) Larvicidal effect of Catharanthus roseus L (G) Don. Aqueous extracts on the larvae of Heliocoverpa armigera (Hubner). Int J Life Sci Educ Res 3:10–14

    Google Scholar 

  • Alen K, Mohan Jain S, Huhtikangas A (1995) Micro-propagation of Catharanthus roseus for Vinblastine and vincristine production. European Research Conferences on Plant Cell Biology and Biotechnological Applications Medicinal Plants: Biology, Chemistry and Drug Development. Dourden, pp 14–19

    Google Scholar 

  • Almago L, Gutierrez J, Pedreno AM, Sottomayar M (2014) Synergetic and additives influence of cyclodextrins and methyljasmonate on the expression of the terpenoid indole alkaloid pathway genes and metabolites in Catharanthus roseus cell cultures. Plant Cell Tiss Org Cult 119:543–551

    Article  CAS  Google Scholar 

  • Amico A (1977) Medicinal plants of Southern Zambesia. Fitoterapia 48:101–139

    CAS  Google Scholar 

  • Amini A, Glevarco G, Andreu F, Rideau M, Creche J (2009) Low levels of gibberellic acid control the biosynthesis of ajmalicine in Catharanthus roseus cell suspension cultures. Planta Med 75:187–191

    Article  CAS  PubMed  Google Scholar 

  • Andrade-Cetto A, Heinrich M (2005) Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J Ethnopharmacol 99:325–348

    Article  PubMed  Google Scholar 

  • Anita BS, Okokin JE (2005) Effect of leaf juice of Catharanthus roseus Linn on cholesterol, triglyceride and lipoproteins levels in normal rats. Ind J Pharmacol 37:401–402

    Article  Google Scholar 

  • Anonymous (1903) Description of the Philippines. Part I, Bureau of Public Printing, Manila 24:234–236

    Google Scholar 

  • Anonymous (1979) Antifertility studies on plants. Annual Report of the Director General–Indian Council of Medical Research 47:40–43

    Google Scholar 

  • Anonymous (1985) Ayurvedic drug to fight cancer. Probe 24:234–236

    Google Scholar 

  • Aoyagi H, Akimoto TC, Tanaka H (2006) Preparation of mixed alginate elicitors with high activity for the efficient production of 5′-phosphodiesterase by Catharanthus roseus cells. Biotechnol Lett 28:1567–1571

    Article  CAS  PubMed  Google Scholar 

  • Ara N, Rashid M, Amran MS (2009) Comparison of hypotensive and hypolipidemic effects of Catharanthus roseus leaves extract with atenolol on adrenaline induced hypertensive rats. Pak J Pharm Sci 22:267–271

    PubMed  Google Scholar 

  • Archana H, Vasist R, Sharma RB, Gupta A (2016) Pharmacological reputation of Vinca plant. World J Pharm Pharm Sci 5:1602–1610

    Google Scholar 

  • Asada M, Shuler ML (1989) Stimulation of ajmalicine production and extraction from Catharanthus roseus: effect of adsorption in situ, elicitors and alginate immobilization. Int J Appl Microbiol Biotechnol 30:475–481

    CAS  Google Scholar 

  • Asha A, Vinita P, Hetal J (2015) In vivo comparative study of different variants of Catharanthus roseus (L.) G. Don. for free radical scavenging activity in type 2 diabetes mellitus. J de Afrikana 2:74–86

    Google Scholar 

  • Aslam J, Khan SH, Siddiqui ZH, Fatima Z, Maqsood M, Bhat MA, Nasim SA, Ilah A, Ahmad IF, Khan SA, Mujib A, Sharma MP (2010) Catharanthus roseus (L.) G. Don. An important drug: it’s applications and production. Int J Comp Pharm 4:1–16

    Google Scholar 

  • Aslam J, Ajaz S, Nadim MM (2013) Pharmacognosy, phytochemistry pharmacological and biotechnological approaches of Catharanthus roseus (L.) G. Don. In: Shahid M, Shahzad A, Malik A, Sahai A (eds) Recent trends in biotechnology and therapeutic application of medicinal plants. Springer, New York, p 189

    Chapter  Google Scholar 

  • Aslam J, Mujib A, Sharma MP (2014) Somatic embryos in Catharanthus roseus: a scanning electron microscopic study. Natulae Scientia Biologicae 6:167–172

    Google Scholar 

  • Asthana RB, Misra MK (1979) Orally effective hypoglycemic agent from Vinca rosea. Ind J Biochem Biophys 16:30–35

    Google Scholar 

  • Bakrudeen AAA, Suba Shanthi G, Gouthaman T, Kavitha MS, Rao MV (2011) In vitro micropropagation of Catharathus roseus- an anticancer medicinal plant. Acta Bot Hung 53:197–209

    Article  Google Scholar 

  • Balaabirami S, Patharajan S (2012) In vitro antimicrobial and antifungal activity of Catharanthus roseus leaves extract against important pathogenic organisms. Int J Pharm Pharm Sci 4:487–490

    Google Scholar 

  • Banakar V, Malagi U, Naik R (2007) Impact of periwinkle leaves (Catharanthus roseus) on management of diabetes mellitus, Karnataka. J Agric Sci 20:115–119

    Google Scholar 

  • Barik K, Sao S, Parihar DK (2016) Phytochemical and pharmaceutical panorama of Catharanthus roseus. Indo Am J Pharm Sci 3:288–293

    Google Scholar 

  • Barleben L, Panjikar S, Ruppert M, Koepke J, Stockigta J (2007) Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family. Plant Cell Rep 19:2886–2897

    Article  CAS  Google Scholar 

  • Batra J, Dutta A, Singh D (2005) Growth and terpenoids indole alkaloid production in Catharanthus roseus hairy root clones in relation to left-and right- termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148–154

    Google Scholar 

  • Benjamin BD, Kelkar SM, Pote MS (1994) Catharanthus roseus cell culture: growth, alkaloid synthesis and antidiabetic activity. Phytother Res 8:185–186

    Article  CAS  Google Scholar 

  • Bhandari PR, Mukerji B (1959) Lochnera rosea Linn Reichb. Gauhati Ayurvedic Coll Mag 8:1–4

    Google Scholar 

  • Bhutkar MA, Bhise SB (2011) Comparative studies on antioxidant properties of Catharanthus roseus and Catharanthus alba. Int J Pharm Technol Res 3:1551–1556

    Google Scholar 

  • Bisla G, Choudhary S, Singh E, Chaudhary V (2013) Hyperglycemia and hyperlipidemia mitigating impact of Catharanthus roseus (sadabahar) leaves aquous extract on type 2 diabetes mellitus subjects. Asian J Plant Sci Res 3:170–174

    Google Scholar 

  • Bordelius P, Deus K, Mosbach K, Zenk MH (1979) Immobilized plant cells for the production of natural product. FEBS Lett 103:93–97

    Article  Google Scholar 

  • Brandao M, Botelho M, Krettli E (1985) Antimalarial experimental chemotherapy using natural products. Cienc Cult 37(7):1152–1163

    Google Scholar 

  • Brun G, Bessiere JM, Franca DMG, David B, Mariotte AM (2001) Valatile components of Catharanthus roseus (L) G. Don (Apocyanaceae). Flav Frag J 16:116–119

    Article  CAS  Google Scholar 

  • Bruneton J (1993) Phytochemistry medicinal plants, 2nd edn (trans: Hatton CK). Lavoisier, Paris, pp 1016–1018

    Google Scholar 

  • Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38:131–141

    Article  CAS  PubMed  Google Scholar 

  • Campos-Tamayo F, Hernandez-Domınguez E, Vazquez-Flota F (2008) Vindoline formation in shoot cultures of Catharanthus roseus is synchronously activated with morphogenesis through the last biosynthetic step. Ann Bot 102:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carturan G, Dal Monte R, Pressi G, Secondin S, Verza P (1998) Production of valuable drugs from plant cells immobilized by hybrid Sol-Gel SiO2. J Sol Gel Sci Technol 13:273–276

    Article  CAS  Google Scholar 

  • Chaman S, Sharma G, Anil S, Reshi K (2013) Study of antimicrobial properties of Catharanthus roseus by agar well diffusion method. Int Res J Pharm Appl Sci 5:65–68

    Google Scholar 

  • Chattopadhyay RR, Banerjee RN, Sarkar SK (1992) Anti inflammatory and acute toxicity studies with the leaves of Vinca rosea Linn. in experimental animals. Ind J Physiol Pharmacol 36:291–292

    CAS  Google Scholar 

  • Chile SK, Saraf M, Barde AK (1981) Efficacy of Vinca rosea extract against human pathogenic strains of Trichophyton rubrum Sab. Ind Drugs Pharm Ind 16:31–33

    Google Scholar 

  • Chopra IC, Jamwal KS, Chopra CL (1959) Preliminary pharmacological investigations of total alkaloids of Lochnera rosea (Rattonjot). Ind J Med Res 47:40

    Google Scholar 

  • Contin A (1999) The biosynthesis of secologanin in Catharanthus roseus cell suspension cultures. Ph.D thesis, Leiden University, The Netherlands

    Google Scholar 

  • Cordell GA, Quinn-Beattie ML, Farnsworth NR (2001) The potential of alkaloids in drug discovery. Phytother Res 15:183–205

    Article  CAS  PubMed  Google Scholar 

  • Costa MR, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barceloo AR, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courdavault V, Clastre M, Simkin AJ, Guivarch NG (2013) Prenylated proteins are required for methy-jasmonate induced monoterpenoid indole alkaloids biosynthesis in Catharanthus roseus. In: Bach TJ, Rohmer M (eds) Isoprenoid synthesis in plants and microorganism: new concepts and expremental approaches. Springer Science + Business Media, New York, p 285

    Google Scholar 

  • Datta A, Srivastava PS (1997) Variation in vinblastine production by Catharanthus roseus, during in vivo and in vitro differentiation. Phytochemistry 46:135–137

    Article  CAS  Google Scholar 

  • De Luca V, Cutler AJ (1987) Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 85:1099–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Luca V, Balsevich J, Tyler RT, Eilert U, Panchuk BD, Kurz WGW (1986) Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. J Plant Physiol 125:147–156

    Article  CAS  Google Scholar 

  • De Luca V, Fernandez JA, Campbell D, Kurz WGW (1988) Developmental regulation of enzymes of indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 86:47–450

    Article  Google Scholar 

  • De Mello JF (1980) Plants in traditional medicine in Brazil. J Ethnopharmacol 2:49–55

    Article  CAS  PubMed  Google Scholar 

  • De Ropp RS (1947) The response of normal plant tissues and of crown gall tumor tissue to synthetic groth hormones. Am J Bot 34:53–63

    Article  CAS  Google Scholar 

  • Decendit A, Petit G, Andreu F, Doireau P, Merillon J, Merillion M, Rideau M (1993) Putatives sites of cytokinins action during their enhancing effect on indole alkaloid accumulation in periwinkle cell suspensions. Plant Cell Rep 12:710–712

    Article  CAS  PubMed  Google Scholar 

  • Dhandapani MD, Kim H, Hong SB (2008) Efficient plant regeneration via somatic embryogenesis from the explants of Catharathus rosues. In Vitro Cell Dev Biol 44:18–25

    Article  CAS  Google Scholar 

  • Dhruva B, Ramakrishnan T, Vaidyanthan C (1977) Studies in Catharanthus roseus callus cultures, callus initiation and differentiation. Curr Sci 46:364–365

    CAS  Google Scholar 

  • Dicosmo F, Towers GHN (1984) Stress and secondary metabolism in cultured plant cells. In: Timmermann BN, Steelink C, Leowus FA (eds) Recent advances stress. Plenum Press, New York, pp 97–175

    Google Scholar 

  • Doller G, et al. (1976) Production von indole alkaloid in callus kulturen von Catharanthus roseus. Planta Med 30:14–20

    Article  CAS  PubMed  Google Scholar 

  • Don G (1999) Catharanthus roseus, medicinal plants of the world. Human press, Totowa, NJ, pp 109–118

    Google Scholar 

  • Doran PM (1997) Hairy roots, culture and application. Harwood Academic, Newark, NJ

    Google Scholar 

  • Duke JA (1985) Handbook of medicinal herbs. CRC, Boca Raton, FL, p 256

    Google Scholar 

  • Duperon P, Allais JP, Dupaix AL (1992) Composition of the sterol content of tonoplast and microsomal fractions isolated from Catharanthus roseus suspension cultured cells. Plant Physiol Biochem 30:495–498

    CAS  Google Scholar 

  • Elisabetsky E, Costa-Campos L (2006) The alkaloid alstonine: a review of its pharmacological properties. J Evid Based Complement Altern Med 3:39–48

    Article  CAS  Google Scholar 

  • El-Merzabani MM, Aaser EAA, Duweini EAK (1979) A bioassay of antimitotic alkaloids of Catharanthus roseus. Planta Med 36:87–90

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed A, Cordell GA (1981) Catharanthus alkaloids. XXXIV. Catharanthamine, a new antitumor bisindole alkaloid from Catharanthus roseus. J Nat Prod 44:289–293

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed M, Verpoorte R (2002) Effect of phytohormones on growth and alkaloid accumulation by a Catharanthus roseus cell suspension cultures fed with alkaloid precursors tryptamine and loganin. Plant Cell Tiss Org Cult 68:265–270

    Article  CAS  Google Scholar 

  • El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6:277–305

    Article  CAS  Google Scholar 

  • El-Sayed M, Choi YH, Frederich M, Roytrakul S, Verpoorte R (2004) Alkaloid accumulation in Catharanthus roseus cell suspension cultures fed with stemmadenine. Biotechnol Lett 26:793–798

    Article  CAS  PubMed  Google Scholar 

  • Ethalsha P, Retna M (2014) Evaluation of antioxidant potential and antibacterial activity of crude extracts Catharanthus roseus. Int J Pharm Sci Res 5:3490–3495

    Google Scholar 

  • Evans WC (1996) Trease and Evans. Pharmacognosy, 14th edn. pp 421

    Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ, Dicosmo F (1990) Immobilization of cultured Catharanthus roseus cells using a fiberglass substratum. Appl Microbiol Biotechnol 33:36–42

    Article  CAS  Google Scholar 

  • Facchini PJ, Dicosmo F, Radvanyi LG, Giguere Y (1988) Adhesion of Catharanthus roseus cells to surfaces: effect of substrate hydrophobocity. Biotechnol Bioeng 32:935–938

    Article  CAS  PubMed  Google Scholar 

  • Faheem M, Singh S, Tanwer BS, Khan M, Shahzad A (2011) In vitro regeneration of multiplication shoots in Catharanthus roseus—an important medicinal plant. Adv Appl Sci Res 2:208–213

    CAS  Google Scholar 

  • Farmsworth NR, Svoboda GH, Blomster RN (1968) Antiviral acvtivity of selected Catharanthus antiviral activity of selected Catharanthus alkaloids. J Pharmacol Sci 57:2174–2175

    Article  Google Scholar 

  • Farnsworth NR, Blomster RN, Buckley JP (1967) Catharanthus alkaloids XIII: antineoplastic and hypotensive activity of alkaloid fractions and certain alkaloids from Catharanthus lanceus. J Pharm Sci 56:23–27

    Article  CAS  PubMed  Google Scholar 

  • Ferrari G, Fervidi O, Ferrari M (1971) Phytochemistry. In: Arnold B (ed) The alkaloid. Academic Press, London, pp 24–28

    Google Scholar 

  • Filova A (2014) Production of secondary metabolites in plant tissue cultures. Res J Agric Sci 46:236–245

    Google Scholar 

  • Flatt SK, Day C, Flatt PR (1989) Glycaemia effects of traditional European plant treatments for diabetes studies in normal and streptozotocin diabetic mice. J Diabetes Res 10:69–73

    Google Scholar 

  • Fransworth NR (1961) The pharmacognosy of the Periwinkles: Vinca and Catharanthus. Lioydia 24:105–138

    Google Scholar 

  • Gajalakshmi S, Vijayalakshmi S, Rajeswari DV (2013) Pharmacological activities of Catharanthus roseus: a perspective. Int J Pharm Biosci 4:431–439

    Google Scholar 

  • Garcia F (1954) Proceeding. 8th Pacific Science, Congress National Council Research, Philippines, p 182

    Google Scholar 

  • Gantet P, Imbaut N, Theiersaul M, Doireau P (1998) Necessity of a octadecanoic pathway for alkaloid synthesis by Catharanthus roseus cell suspension cultured in an Auxin starved medium. Plant Cell Physiol 39:220–225

    Article  CAS  Google Scholar 

  • Geerlings A, Ibanez MM, Memelink J, Heijden R, Verpoorte R (2000) Molecular cloning and analysis of strictosidine beta-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275:3051–3056

    Article  CAS  PubMed  Google Scholar 

  • Getahun A (1976) Some common medicinal and poisonous plants used in ethiopian folk medicine. Addis Ababa University, Addis Ababa, Ethiopia, p 216

    Google Scholar 

  • Govindasamy C, Srinivasan R (2012) In vitro antibacterial activity and phytochemical analysis of Catharanthus roseus (Linn.) G. Don. Asian Pac J Trop Biomed 2:155–158

    Article  Google Scholar 

  • Gueritte F, Fahy J (2005) The vinca alkaloids. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Runner-Routledge Psychology Press, Taylor & Francis Group, Boca Raton, FL, pp 123–136

    Google Scholar 

  • Guirimand G, Guihu RA, Phillips MA, Oudin A, Glevarec G, Melin C, Papon N, Clastre M, Giglioli-Guivarch N, St-Pierre B, Rodriguez-Concepcion M, Burlat V, Courdavault V (2012) Triple subcellular targeting of isopentenyl diphosphate isomerases encoded by a single gene. Plant Signal Behav 7:1495–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulik VWM, Ten Hoopen HJG, Heijnen JJ (1993) A structured model describing carbon and phosphate limited growth of Catharanthus roseus plant cell suspensions in batch and chemostat cultures. Biotechnol Bioeng 41:771–780

    Article  PubMed  Google Scholar 

  • Haq R, Naz S, Aslam F, Manzoor F (2013) Comparison of in vitro response of micropropagation and callogenesis of medicinal plant, Vinca rosea L. J Agric Res 51:9

    Google Scholar 

  • Hassan K, Brenda A, Patrick V, Patrick O (2011) In vivo antidiarrheal activity of the ethanolic leaf extract of Catharanthus roseus Linn. (Apocynaceae) in Wistar rats. Afr J Pharm Pharmacol 5(15):1797–1800

    Article  Google Scholar 

  • He L, Yang L, Tan R, Zhao S, Hu Z (2011) Enhancement of vindoline production in suspension culture of the Catharanthus roseus cell line C20hi by light and methyl jasmonate elicitation. Anal Sci 27(12):1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Hegarty PK, Smart NJ, Scargg AH, Fowler MW (1986) The aeration of Catharanthus roseus L. G. Don suspension cultures in airleft bioreactors; the inhibitions effect at high aeration rates on culture growth. J Exp Bot 37:1911–1920

    Article  CAS  Google Scholar 

  • Heijden R, Verpoorte R, Ten Hoopen HJG (1989) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey. Plant Cell Tiss Org Cult 18:231

    Article  Google Scholar 

  • Heijden VDR, Jacobs D, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11(5):607–628

    Article  Google Scholar 

  • Hildebrandt AC, Riker AJ (1949) The influence of various carbon components on the growth of marigold, Paris daisy, periwinkle, sunflower and tobacco tissue in vitro. Am J Bot 36:74–85

    Article  CAS  PubMed  Google Scholar 

  • Hirata K, Horiuchi M, Asada M, Ando T, Miyamota K, Miura Y (1992) Stimulation of dimeric alkaloid production by near ultraviolet light in multiple shoot cultures of Catharanthus roseus. J Ferment Bioeng 74:222–225

    Article  CAS  Google Scholar 

  • Hirata K, Miyamoto K, Miura Y (1994) III Catharanthus roseus L. (Periwinkle): production of vindoline and catharanthine. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Medicinal and aromatic plants. VI. Springer, Berlin, pp 46–54

    Google Scholar 

  • Hodge WH, Taylor D (1956) The ethanobotany of the Island Caribes of Dominica. WEBBIA 12:513–644

    Article  Google Scholar 

  • Holdsworth DK (1990) Traditional medicinal plants of Rarotonga, Cooks Islands Part I. Int J Crude Drug Res 28:209–218

    Article  Google Scholar 

  • Hoskeri H, Agarwal S, Jacob S, Chettri N, Bisoyi S, Tazeen A, Vedamurthy A, Krishna V (2011) In-vitro anthelminthic activity of Catharanthus roseus extract. Int J Pharma Sci Drug Res 3:211–213

    Google Scholar 

  • Hsu FL, Cheng JT (1992) Investigation in rats of the antihyperglycaemic effect of plant extracts used in Taiwan for the treatment of diabetes mellitus. Phytother Res 6:108–111

    Article  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KV (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6:268–276

    Article  CAS  PubMed  Google Scholar 

  • Hunter WN (2007) The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Biochem 282:21573–21577

    CAS  Google Scholar 

  • Hussey RL (1964) Eli Lilly and Company, Personal Communication. pp 153

    Google Scholar 

  • Ibrahim M, Mehjabeen SS, Narsu ML (2011) Pharmacological evaluation of Catharanthus roseus. Int J Pharm Appl 2:165–173

    Google Scholar 

  • Iman M, Talaat MA, Bekheta MMH (2005) Physiological response of periwinkle plants (Catharanthus roseus L.) to tryptophan and putrescine. Int J Agric Biol 7:210–213

    Google Scholar 

  • Irmler S, Schroder G, St-Pierre B, Crouch NP, Hotze M, Sch-midt J, Strack D, Matern U, Schroder J (2000) Indolealkaloid biosynthesis in Catharanthus roseus: new activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24:797–804

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa H, Colby DA, Seto S, Van P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL (2009) Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. J Am Chem Soc 131:4904–4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MA, Akhtar MA, Khan MRI, Hossain MS, Alam MK, Wahed MII, Rahman BMA, Anisuzzaman SM, Shaheen SM, Ahmed M (2009) Antidiabetic and hypolipidemic effects of different fractions of Catharanthus roseus. (Lin.) Don normal and streptozotocin-induced diabetic rats. J Sci Res 1:334–344

    CAS  Google Scholar 

  • Jafri SA, Rehman K, Qasim M, Kalsoom (2014) Effect of Murraya koenigii, Catharanthus roseus and Psidium guajava leaves extract on blood glucose in alloxan induced diabetic rats. Am J Biol Life Sci 2:1-5

    Google Scholar 

  • Jaleel CA (2009) Changes in non-enzymatic antioxidants and ajmalicine production in Catharanthus roseus with different soil salinity regimes. Bot Res Int 2:01–06

    Google Scholar 

  • Jaleel CA, Gopi R, Lakshmana AGM, Panneerselvam R (2006) Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. Plant Sci 171:271–276

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannen P, Sankar B, Kishorekumar A, Sankari S, Panneerselvam R (2007) Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus. Process Biochem 42:1566–1570

    Article  CAS  Google Scholar 

  • Jayanthi M, Sowbala N, Rajalakshmi G, Kanagavalli U, Sivakumar V (2010) Study of anti-glycemic effect of Catharanthus roseus in alloxan induced diabetic rats. Int J Pharm Pharm Sci 2(4):114–116

    Google Scholar 

  • Joshi MS, Ambaye RY (1968) Effect of alkaloids from Vinca rosea on spermatogenesis in male rats. Ind J Exp Biol 6:256–257

    CAS  Google Scholar 

  • Jossang A, Fodor P, Bodo B (1998) A new structural class of bisindole alkaloids from the seeds of Catharanthus roseus: vingramine and methylvingramine. J Org Chem 63:7162–7167

    Article  CAS  PubMed  Google Scholar 

  • Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O (2006) Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol Eng 23:265–279

    Article  CAS  PubMed  Google Scholar 

  • Junaid A, Mujib A, Fatima S, Sharma M (2008) Cultural conditions affect somatic embryogenesis in Catharanthus roseus L. (G.) Don. Plant Biotechnol Rep 2:179–189

    Article  Google Scholar 

  • Jung KH, Kwak SS, Kim SW, Lee H, Choi CY, Liu JR (1992) Improvement of catharanthine productivity in hairy root cultures of C. roseus by using monosaccharides as carbon sources. Biotechnol Lett 14:695–700

    Article  CAS  Google Scholar 

  • Kai G, Zhang A, Guo Y, Li L, Cui L, Luo X, Liu C, Xiao J (2012) Enhancing the production of tropane alkaloids in transgenic Anisodus acutangulus hairy root cultures by over-expressing tropinone reductase I and hyoscyamine-6b-hydroxylase. Mol Biosyst 8:2883–2890

    Article  CAS  PubMed  Google Scholar 

  • Kevin LYW, Hussin AH, Zhari I, Chin JH (2012) Sub-acute oral toxicity study of methanol leaves extract of Catharanthus roseus in rats. J Acute Dis 1:38–41

    Article  Google Scholar 

  • Khalil A (2012) Antimicrobial activity of ethanol leaf extracts of Catharanthus roseus from Saudi Arabia. Second International Conference on Environment Science and Biotechnology. IPCBEE, vol 48. IACSIT Press, Singapore

    Google Scholar 

  • Khan A (2016) A comparitive study of antidiabetic activity of Catharanthus roseus and Catharanthus alba flower extracts on alloxan induced diabetic rats. World Int J Pharm Pharm Sci 5(2):527–543

    CAS  Google Scholar 

  • Kim SW, Dong S, Choi P, Jang R (2004) Plant regeneration from immature zygotic embryo-derived embryogenic calluses and cell suspension cultures of Catharanthus roseus. Plant Cell Tiss Org Cult 76:131–135

    Article  CAS  Google Scholar 

  • Kintzios SE, Barberaki MG (2003) Plant that fight cancer. CRC Press, Washington, DC, pp 33–54

    Google Scholar 

  • Knobloch KH, Berlin J (1980) Influence of medium composition on the formation of secondary compounds in cell suspension cultures of Catharanthus roseus (L.) G. Don. Z Naturforsch 35:551–556

    Google Scholar 

  • Knobloch KH, Bast G, Berlin J (1982) Medium and light induced formation of serpentine and anthocyanins in cell suspension cultures Catharanthus roseus. Phytochemistry 21:591–594

    Article  CAS  Google Scholar 

  • Kodja HP, Liu D, Merillon JM, Andreau F, Raideau M, Cheniex JC (1989) Stimulation par les cytokinins de I, accumulation d’ alcaloides indoliques dans des suspensions cellularies de Catharanthus roseus. (L.) G. Don. Z Naturforsch 35c:551–556

    Google Scholar 

  • Koul M, Lakra SN, Chandra R, Chandra S (2013) Catharanthus roseus and prospects of its endophytes: a new avenue for production of bioactive metabolites. Int J Pharm Pharm Sci 4:2705–2716

    Google Scholar 

  • Kubas J (1972) Investigation on known or potential antitumoral plants by means of microbiological test. Part III. Biological activity of some cultivated plant species in Neurospora crassa test. Acta Biol Cracov Ser Bot 15:87–100

    Google Scholar 

  • Kubota K, Li XN, Ashihara H (1989) The short-term effects of inorganic phosphate on the levels of metabolites in suspension-cultured Catharanthus roseus cells. Z Naturforsch 44c:802–806

    Google Scholar 

  • Kulkarni R, Ravindra N (1988) Resistance to Pythium aphanidermatum in diploid and induced autotetraploids of Catharanthus roseus. Planta Med 54:356–359

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Singhal KC, Sharma RA, Govind K, Kumar VV (2012) Analysis of antioxidant activity of Catharanthus roseus L. and it’s association with habitat temperature. Asian J Exp Biol Sci 3:706–713

    Google Scholar 

  • Kumar KB, Rajeev Kumar SB, Dwivedia VB, Raia AB, Ashutosh K, Shuklab KS, Dinesh A, Nagegowdaa B (2015) Precursor feeding studies and molecular characterization of geraniolsynthase establish the limiting role of geraniol in monoterpene indolealkaloid biosynthesis in Catharanthus roseus leaves. Plant Sci 239:56–66

    Article  CAS  PubMed  Google Scholar 

  • Kumari K, Gupta S (2013) Phytopotential of Catharanthus roseus L. (G.) Don. var. Rosea and alba against various pathogenic microbes In vitro. Int J Res Pure Appl Microbiol 3:77–82

    Google Scholar 

  • Kuppusamy C, Murugan K, Arul N, Yasodh P (2009) Larvicidal and insect growth regulator effect of α-amyrin acetate from Catharanthus roseus Linn against the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Entomol Res 39:78–83

    Article  Google Scholar 

  • Kurtz WGW, Chatson KB, Constable F (1980) Alkaloid production in Catharanthus roseus cell cultures. Characterization of the 953 cell line. Helv Chim Acta 63:1891–1896

    Article  Google Scholar 

  • Kutchan TM (1993) Strictosidine-from alkaloid to enzyme to gene. Phytochemistry 32:493–505

    Article  CAS  PubMed  Google Scholar 

  • Kutney JP, Honda T, Kazmaizer RM, Lewis NJ, Worth BR (1980) Helv Chem Acta 63:366

    Article  CAS  Google Scholar 

  • Laflamme P, St-Pierre B, De Luca V (2001) Molecular and biochemical analysis of a madagascar periwinkle root-specific minovincinine-19-Hydroxy-O-Acetyltransferase. Plant Physiol 125:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata B (2007) Cultivation mineral nutrition and seed production of Catharanthus roseus (L.) G. Don in the temperate climate zone. Phytochem Rev 6:403–411

    Article  CAS  Google Scholar 

  • Lee-Parsons CWT, Erturk S (2005) Ajmalicine production in methyl jasmonate-induced Catharanthus roseus cell cultures depends on Ca2+ level. Plant Cell Rep 24:677–682

    Article  CAS  PubMed  Google Scholar 

  • Lee-Parsons CWT, Royce AJ (2006) Precursor limitations in methyl jasmonate—induced Catharanthus roseus cell cultures. Plant Cell Rep 25:607–612

    Article  CAS  PubMed  Google Scholar 

  • Letchuman GR, Nazaimoon WWM, Mohamad WWB, Chandran LR, Tee GH, Jamaiyah H, Isa MR, Zanariah H, Fatanah I, Faudzi AY (2010) Prevalence of diabetes in the Malaysian national health morbidity survey III 2006. Med J Malays 65:173–179

    Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  CAS  PubMed  Google Scholar 

  • Liscombe DK, O’Connor SE (2011) A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry 72:1969–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Jin H, Chen Y, Cui L, Ren W, Gong Y (2007) Terpenoid indole alkaloids biosynthesis and metabolic engineering in Catharanthus roseus. J Integr Plant Biol 49:961–974

    Article  CAS  Google Scholar 

  • Liu Y, Zhao D, Zu Y, Tang Z, Zhang Z, Jiang Y (2011) Effects of low light on terpenoid indole alkaloid accumulation and related biosynthetic pathway gene expression in leaves of Catharanthus roseus seedlings. Bot Stud 52:191–196

    CAS  Google Scholar 

  • Liu J, Zhu J, Tang L, Wen W, Lv S, Yu R (2014) Enhancement of vindoline and vinblastine production in suspension-cultured cells of Catharanthus roseus by artemisinic acid elicitation. World J Microbiol Biotechnol 30:175–180

    Article  CAS  PubMed  Google Scholar 

  • Loyola-Vargas VM, Mende-Zeel M, Monforte-Gonzales M, Miranda-Ham ML (1992) Serpentine accumulation during greening in normal and tumor tissues of Catharanthus roseus. J Plant Physiol 140:213–217

    Article  CAS  Google Scholar 

  • Lynn DG, Chen RH, Manning KS (1987) The structural characterization of endogenous factors from Vinca rosea crown gall tumors that promote cell division of tobacco cells. Proc Natl Acad Sci USA 84:615–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahroug S, Courdavault V, Thiersault M, St-Pierre B, Burlat V (2006) Epidermis is a pivotal site of at least four secondary metabolic pathways in Catharanthus roseus aerial organs. Planta 223:1191–1200

    Article  CAS  PubMed  Google Scholar 

  • Mahroug S, Burlat V, St-Pierre B (2007) Cellular and sub-cellular organisation of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Phytochem Rev 6:363–381

    Article  CAS  Google Scholar 

  • Maki H, Ando S, Kodama H, Komamine A (1991) Polyamines and the cell cycle of Catharanthus roseus cells in culture. Plant Physiol 96:1008–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malabadi RB, Mulgund GS, Nataraja K (2009) Triacontanol induced somatic embryogenesis and plantlet regeneration in Catharanthus roseus. J Med Arom Plant Sci 31:147–151

    CAS  Google Scholar 

  • Manigandan V, Gurudeeban S, Satyavani K, Ramanathan T (2014) Molecular docking studies of Rhizophora mucronata alkaloids against neuroinflammatory marker cyclooxygenase 2. Int J Biol Chem 8:91–99

    Article  Google Scholar 

  • Maurel B, Parellieux A (1985) Effect of carbon dioxide on the growth of cell suspensions of Catharanthus roseus. Biotechnol Lett 7:313–318

    Article  CAS  Google Scholar 

  • McKnight T, Bergey D, Burnett R, Nessler C (1991) Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic Tobacco plants. Planta 185:148–115

    Article  CAS  PubMed  Google Scholar 

  • Memelink J, Verpoorte R, Kijne W (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trend Plant Sci 6:212–219

    Article  CAS  Google Scholar 

  • Menke FLH, Parchmann S, Mueller MJ, Kijne JW, Memelink J (1999) Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol 1:1289–1296

    Article  Google Scholar 

  • Mera N, Aoyagi H, DiCosmo F, Tanaka H (2003) Production of cell wall accumulative enzymes using immobilized protoplasts of Catharanthus roseus in agarose gel. Biotechnol Lett 25:1687–1693

    Article  CAS  PubMed  Google Scholar 

  • Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, der Krol VS, Lugan R, Ilc T, Verpoorte V, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Reichhart WD (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606

    PubMed  PubMed Central  Google Scholar 

  • Minocha R, Minocha SC, Komamine A, Shortle WC (1990) Role of polyamines in DNA synthesis of Cathranthus roseus cells Grown in suspension culture. In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene: biochemistry, physiology, and interactions. Am Soc Plant Physiol pp 339-342

    Google Scholar 

  • Minocha R, Minocha SC, Komamine A, Shortle WC (1991) Regulation of DNA synthesis and cell division by polyamines in Catharanthus roseus suspension cultures. Plant Cell Rep 10:126–130

    Article  CAS  PubMed  Google Scholar 

  • Misawa M (1977) Production of natural substances by plant cell cultures described in Japanese patents. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its bio-technological application. Proceedings of the First International Congress on Medicinal Plant Research. Springer, Berlin, pp 17–26

    Google Scholar 

  • Misra N, Luthra R, Kumar S (1996) Enzymology of indole alkaloid biosynthesis in Catharanthus roseus. Ind J Biochem Biophys 33:261–273

    CAS  Google Scholar 

  • Misra N, Misra R, Mariam A, Yusuf K, Yusuf L (2014) Salicylic acid alters antioxidant and phenolics metabolism in Catharanthus roseus grown under salinity stress. Afr J Trad Complement Altern Med 11:118–125

    Google Scholar 

  • Miura Y, Hirata K, Kurano N, Miyamoto K, Uchida K (1988) Formation of vinblastine in multiple shoot culture of Catharanthus roseus. Planta Med 54:18

    Article  CAS  PubMed  Google Scholar 

  • Mohamed EH, Soad SE, Kamelia AES, Amira MH (2007) Response of Catharanthus roseus shoots to salinity and drought in relation to vincristine alkaloid content. Asian J Plant Sci 6:1223–1228

    Article  Google Scholar 

  • Mohan SCT, Priyadarshini GS, Balamurugan V (2015) GC-MS analysis of phytochemicals and hypoglycemic effect of Catharathus roseus in alloxan induced diabetic rats. Int J Pharm Sci Res 25:123–128

    Google Scholar 

  • Mollers C, Sarkar S (1989) Regeneration of healthy plants from Catharanthus roseus infected with mycoplasma-like organisms through callus culture. Plant Sci 60:83–89

    Article  Google Scholar 

  • Monograph (2016) Thin-baw-ma-hnyo. Catharanthus roseus. Medicinal plants of Myanmar. Ministry of Health, Department of Traditional Medicine, pp 35–36

    Google Scholar 

  • Moreno PRH, Heijden VDR, Verpoorte R (1993) Effect of terpenoid precursor feeding and elicitation on formation of indole alkaloids in cell suspension cultures of Catharanthus roseus. Plant Cell Rep 12:702–705

    Article  CAS  PubMed  Google Scholar 

  • Moreno PRH, Heijden VDR, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus (L.) Don. A literature survey II. Updating from 1988–1993. Plant Cell Tiss Org Cult 42:1–25

    Article  Google Scholar 

  • Moreno VOA, Coello-Coello J, Loyola-Vargas VM, Vazquez-Flota F (1999) Nutrient consumption and alkaloid accumulation in a hairy root line of Catharanthus roseus. Biotechnol Lett 21:1017–1021

    Article  Google Scholar 

  • Morgan JBA, Shanks JBV (2000) Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J Biotechnol 79:137–145

    Article  CAS  PubMed  Google Scholar 

  • Morrison EYSA, West M (1982) A preliminary study of the effects of some West Indian medicinal plants on blood sugar levels in the dog. West Indian Med J 31:194–197

    CAS  PubMed  Google Scholar 

  • Morris P (1986a) Regulation of product synthesis in cell cultures of Catharanthus roseus. Effect of temperature. Plant Cell Rep 5:427–429

    Article  CAS  PubMed  Google Scholar 

  • Morris P (1986b) Regulation of product synthesis in cell cultures of Catharanthus roseus. II. Comparison of production media. Planta Med 52:121–126

    Article  Google Scholar 

  • Morton JF (1976) Periwinkle. In: Morton JF (ed) Major medicinal plants: botany, culture and uses. Charles C Thomas, Springfield, IL, pp 237–124

    Google Scholar 

  • Mostofa M, Choudhury ME, Hossain MA, Islam MZ, Islam MS, Sumon MH (2007) Antidiabetic effects of Catharanthus roseus, Azadirachta indica, Allium sativum and glimepride in experimentally diabetic induced rat. Bangladesh J Vet Med 5:99–102

    Google Scholar 

  • Mujib A, Ilah A, Aslam J, Fatima S, Siddiqui ZH, Maqsood M (2012) Catharanthus roseus alkaloids: application of biotechnology for improving yield. Plant Growth Regul 68:111–127

    Article  CAS  Google Scholar 

  • Mujib A, Ali M, Isah T, Dipti (2014) Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor)—a comparative study. Saudi J Biol Sci 21:442–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhapadhyay S, Cordell GA (1981) Catharanthus alkaloid XXXVI isolation of vinca leukoblastine (VLB) and periformyline from Catharanthus trichophyllus and pericyclivine from Catharanthus roseus. J Nat Prod 44:335–339

    Article  Google Scholar 

  • Muralidharan L (2015) Hypoglycemic and biochemical remedies of Cathanthus roseus (Linn) on Alloxan – induced diabetic rat and its antioxidant status in rat lenses. Int J Med Res Pharm Sci 2:1–6

    Google Scholar 

  • Murata J, De Luca V (2005) Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44:581–594

    Article  CAS  PubMed  Google Scholar 

  • Murugavel T, Akbarsha MA (1991) Anti-spermatogenetic effect of Vinca rosea Linn. Ind J Exp Biol 29:810–812

    CAS  Google Scholar 

  • Mustafa NR, Verpoorte R (2007) Phenolic compounds in Catharanthus roseus. Phytochem Rev 6:243–258

    Article  CAS  Google Scholar 

  • Muthulakshmi S, Pandiyarajan V (2013) Influence of IAA on the vincristine content of Catharanthus roseus (L). G. Don. Asian J Plant Sci Res 3:81–87

    CAS  Google Scholar 

  • Namedo A, Patil S, Fulzele DP (2002) Influence of fungal elicitors on production of ajamlicine by cell cultures of Catharanthus roseus. Biotechnol Process 18:159–162

    Article  CAS  Google Scholar 

  • Nammi S, Boini MK, Lodagala SD, Babu R, Behara S (2003) The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complement Altern Med 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Natarajan A, Zameer K, Ahmed SZ, Sundaresan S, Sivaraj A, Devi K, Senthil Kumar B (2012) Effect of aqueous flower extract of Catharanthus roseus on alloxan induced diabetes in male albino rats. Int J Pharm Sci Drug Res 4:150–153

    Google Scholar 

  • Navitha A, Sheeba AH, Ramesh C, Banu S (2012) Hypoglycemic and diabetic activity of ethanolic extract of Catharanthus pusillus (Murray) G. Don. J Pharm 2:17–21

    Google Scholar 

  • Nayak BS, Pereria PL (2006) Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats. BMC Complement Altern Med 6:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negi NC, Bhatia MC (1956) Biological investigation of Vinca rosea. Ind J Pharma 18:73–76

    Google Scholar 

  • Nejat N, Valdiani A, Cahill D, Tan Y, Maziah M, Abiri R (2015) Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): the two faces of a versatile herb. Sci World J 2015:1–19

    Article  Google Scholar 

  • Nguywen VD (1977) List of simple drugs and medicinal plants of value in Vietnam. Proceeding Seminar of the use of Medicinal Plants in Healthcare. Tokyo, WHO Regional Officer Manila, vol 13. pp 65–83

    Google Scholar 

  • Noble RL (1990) The discovery of the vinca alkaloids-chemotherapeutic agents against cancer. Int J Biochem Cell Biol 68:1344–1351

    Article  CAS  Google Scholar 

  • Nuutila AM (1994) Bioreactor studies on hairy root cultures of Catharanthus roseus. Composition of three bioreactor types. Biotechnol Tech 8:61–66

    Article  CAS  Google Scholar 

  • Ohadoma SC, Michael HU (2011) Effect of co-administration of methanol leaf extract of Catharnthus roseus on the hypoglycemic activity of metformin and glibenclamide in rats. Asian Pac J Trop Med 4:475–477

    Article  CAS  PubMed  Google Scholar 

  • Ouwerkerk PB, Hallard D, Verpoorte R, Memelink J (1999) Identification of UV-B responseive in the promoter of the tryptophane decarboxylase gene from Catharanthus roseus. Plant Mol Biol 41:491–503

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15:221–250

    Article  CAS  Google Scholar 

  • Pandey S, Bahadur AN, Kanungo VK, Tiwari U (2014) In vitro propagation of a medicinal plant Catharanthus roseus L. (G.) Don. Ind J Life Sci 4:125–128

    Google Scholar 

  • Pandiangan D, Tilaar W, Nainggolan N (2013) Morphological changes of cell in relation to increased catharanthine content of Catharanthus roseus cell aggregate culture after Tryptophan treatment. J Basic Appl Sci 13:45–51

    Google Scholar 

  • Park KH, Saimoto H, Nakagawa S (1989) Occurrence of brassinolide and castasterone in crown gall cells of Catharanthus roseus. Agric Biol Chem 53:805–812

    CAS  Google Scholar 

  • Patel PJ, Ghosh JS (2010) Antimicrobial activity of Catharanthus roseus—a detailed study. Br J Clin Pharmacol Toxicol 1:40–44

    Google Scholar 

  • Patel Y, Vadgama V, Baxi S, Tripathi CB (2011) Evaluation of hypolipidemic activity of leaf juice of Catharanthus roseus (Linn). G. Donn. in Guinea pigs. Acta Pol Pharm Drug Res 68:927–935

    Google Scholar 

  • Pauw B, Duijin VB, Kijne JW, Memelink J (2004) Activation of the oxidative burst by yeast elicitor in Catharatnhus roseus cells occurs independenly of the activation of genes involved in alkaloid biosynthesis. Plant Mol Biol 55(6):797–805

    Article  CAS  PubMed  Google Scholar 

  • Paynee GF, Paynee NN, Shuler ML (1988) Bioreactor considerations for secondary metabolite production from plant cell tissue culture; indole alkaloid from Catharanthus roseus. Biotechnol Bioeng 31:905–912

    Article  Google Scholar 

  • Perry LM (1980) Medicinal Plants of East and South East Asia, Attributed properties and Uses. MIT, London, p 732

    Google Scholar 

  • Pietrosiuk A, Furmanowa M, Lata B (2007) Catharanthus roseus: micropropagation and in vitro techniques. Phytochem Rev 6:459–473

    Article  CAS  Google Scholar 

  • Posthouwer C, Verheijden TMS, Van Andel TR (2016) A rapid sustainability assessment of wild plant extraction on the Dutch Caribbean Island of St. Eustatius. Econ Bot 70:320. doi:10.1007/s12231-016-9356-9

    Article  Google Scholar 

  • Prasad A, Mathur P, Shrivastava M, Kumar D, Sharma E (2014) Larvicidal efficacy of Catharanthus roseus linn leaves and flowers against the malaria vector anopheles stephensi liston insecta: diptera: culicidae. Int J Recent Sci Res 5:1620–1623

    Google Scholar 

  • Rahman AU (1982) Some approaches to the study of indigenous medicinal plants. Bull Islamic Med 2:562–568

    Google Scholar 

  • Rai MK, Upadhyay S (1988) Screening of medicinal plants of Chhindwara district against Trichophyton mentagrophytes: A casual organism of Tineapedis. Hindustan Antibiot Bull 30:33–36

    CAS  PubMed  Google Scholar 

  • Rajas MCN, Cuellar MCA (1981) Comparative and microbiological studies of the alkaloids of Catharanthus roseus and other related compounds. Rev Cuba Farm 15:131–138

    Google Scholar 

  • Ramani S, Jayabaskaran C (2008) Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. J Mol Signal 3:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramavat KG, Bhansall RR, Arya HC (1978) Shoot formation in C. roseus (L.) G. Don. Callus cultures. Curr Sci 47(3):93–96

    Google Scholar 

  • Ramirez VR, Mostacero LJ, Garcia AE (1988) Vegetales empleados en medicina tradicional Noreruana. Banco Agrario Del Peru and NACL, Univ Trujillo, Trujill, Peru, p 54

    Google Scholar 

  • Ramya V, Govindaraji K, Kannan N, Jayakumararaj R (2008) In vitro evaluation of antibacterial activity using crude extract of Catharanthus roseus L. (G.) Don. Ethnobot Leaflets 12:1067–1072

    Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  • Rasineni K, Bellamkonda R, Singareddy SR, Desireddy S (2010) Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. Pharmacogn Rev 2:195–201

    Article  Google Scholar 

  • Rasool N, Rızwan K, Zubaır M, Naveed K, Ahmed V (2011) Antioxidant potential of different extracts and fractions of Catharanthus roseus shoots. Int J Phytomed 3:108–114

    Google Scholar 

  • Rho D, Andre G (1991) Growth and stoichiometry of a Catharanthus roseus cell suspension culture grown under nitrogen-limiting conditions. Biotechnol Bioeng 38:579–587

    Article  CAS  PubMed  Google Scholar 

  • Rijhwani SK, Shanks JV (1998) Effect of elicitor dosage and exposure time on biosynthesis of indole alkaloids by Catharanthus roseus hairy root cultures. Biotechnol Prog 14:144–449

    Article  Google Scholar 

  • Rischer H, Oresic M, Seppanen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci U S A 103:5614–5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohtas A (2001) Micropropagation of Salvandora oleoides Decne (Jhal) through tissue culture. M.Sc. thesis, Department of Botany, CCS Haryana Agricultural University, Hisar, India

    Google Scholar 

  • Ross IA (2003) Medicinal Plants of the World 1.Chemical Constituents, Traditional and Modern and Medicinal Uses. 2nd ed., Humana Press. Springer Science + Business Media, New York, 175-177

    Google Scholar 

  • Ross SA, Megalla SE, Bishay DW (1980) Studies for determining antibiotic substances in some Egyption plants. Part 1. Screening for antimicrobial activity. Fitoterapia 51:303–308

    CAS  Google Scholar 

  • Ruffer M, Kan-Fan C, Husson H, Stockigt J, Zenk MH (1979) 4, 21-Dehydrogeissoschizine, an intermediate in heteroyohimbine alkaloid biosynthesis. J Chem Soc 22:1016–1018

    Google Scholar 

  • Ruskin SR, Aruna SR (2014) In-vitro in-vivo antitumor activity of Catharanthus roseus. Int Res J Pharm App Sci 4:1–4

    Google Scholar 

  • Sadowska A, Obidowska G, Szacho-Guchowicz M (1989) Effect of NPK fertilization upon production of crude material and alkaloid content of Catharanthus roseus (L.) G. Don. Biuletyn Instytutu Hodowli i Aklimatyzacji Roslin 170:55–63

    Google Scholar 

  • Saifullah KS (2011) Callus induction and cell suspension culture production of Catharanthus roseus for biotransformation studies of (–)-caryophyllene oxide. Pak J Bot 43:467–473

    CAS  Google Scholar 

  • Sain M, Sharma V (2013) Catharanthus roseus (an anti-cancerous drug yielding plant)—a review of potential therapeutic properties. J Int J Pure Appl Biosci 1:139–142

    Google Scholar 

  • Sakano K, Kiyota S, Yazaki Y (1997) Acidification and alkalinization of culture medium by Catharanthus roseus cells is anoxic production of lactate a cause of cytoplasmic acidification. Plant Cell Physiol 38:1053–1059

    Article  CAS  Google Scholar 

  • Samara D (2015) Nature’s healer “In Sri Lanka.” http://exploresrilanka.lk/2015/12/natures-healer/

    Google Scholar 

  • Sayeed MA, Jasmin MH, Sanker TC, Rahmann MM, Alam MF (2014) Antitumor activity of leaf extract of Catharanthus roseus (L.) G. Don. Plant Environ Dev 3:24–30

    Google Scholar 

  • Schlatmann JE, Ten Hoopen HJG, Heijnen JJ (1992) Optimization of the medium composition for alkaloids production by Catharanthus roseus using statistical experimental designs. Med Fac Landbouw Universiteit Gent 7:1567–1156

    Google Scholar 

  • Schlatmann JE, Moreno PRH, Ten Hoopen HJG (1994) Effect of oxygen and nutrient limitation on ajmalicine production and related enzyme activities in high density cultures of Catharanthus roseus. Biotechnol Bioeng 44:461–468

    Article  CAS  PubMed  Google Scholar 

  • Schlatmann JE, Koolhaas CMA, Vinke JL, Ten Hoopen HJG, Heijnen JJ (1995) The role of glucose in ajmalicine production by Catharanthus roseus cell cultures. Biotechnol Bioeng 47:525–534

    Article  CAS  PubMed  Google Scholar 

  • Schmeller T Wink M (1998) Utilization of alkaloids in modern medicine. In: Roberts MF, Wink M (eds) Alkaloids. Biochemistry, ecology and medicinal applications. Plenum Press, New York, pp 435–459

    Google Scholar 

  • Schmelzer GH, Fakim A (2008) Plant resources of tropical Africa 11(1). Medicinal plants 1. PROTA foundation/backhuys publisher/CTA wageningen, Netherlands, pp 152–159

    Google Scholar 

  • Schmidt B, Kutney J, Mayer L (1998) Anhydrovinblastine for the treatment of cervical and lung cancer. PCT Int. Appl.http://www.google.com/patent/EPO969839A1?cl=en

  • Schroder G, Unterbusch E, Kaltenbach M, Schmidt J, Strack D, De Luca V (1999) Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: Tabersonine 16-hydroxylase. FEBS Lett 458:497–102

    Article  Google Scholar 

  • Scragg AH, Ashton S, York A, Stepan-Sarkissian G, Grey D (1990) Growth of Catharanthus roseus suspension for maximum biomass and alkaloid accumulation. Enzyme Microb Technol 12:292–298

    Article  CAS  Google Scholar 

  • Seaforth CE (2006) Traditional medicines for modern times antidiabetic plants. In: Soumyanath A (ed) Antidiabetic plants in the Caribberian. Taylor & Francis Group, New York, p 314

    Google Scholar 

  • Seitz HU, Eilert U, De Luca V (1989) Elicitor mediated induction of phenylalanine ammonia lyase and tryptophan decarboxylase: accumulation of phenols and indole alkaloids in cell suspension culture of Catharanthus roseus. Plant Cell Tiss Org Cult 18:71–78

    Article  CAS  Google Scholar 

  • Sharma G, Kumar M, Sharma S (2011) Studies on antibacterial activity and biochemical/biophysical properties of phytocystatin purified from Catharanthus roseus (Madagascar periwinkle): an evergreen subshrub commonly found in district Bijnor (UP). Adv Biosci Biotechnol 2:391–396.

    Article  CAS  Google Scholar 

  • Shaqha A, Khan WM, Salam MN, Azzi A, Chaudhary AA (2015) Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats. BMC Complement Altern Med 15:379

    Article  CAS  Google Scholar 

  • Shorti DS, Kelkar M, Deshmukh VK (1963) Investigation of the hyperglycemic properties of Vinca rosea, Cassia auriculata and Eugenia jambolana. Ind J Med Res 51:464–467

    Google Scholar 

  • Siddiqui MJ, Ismail Z, Aisha AFA, Majid AMS (2010) Cytotoxic activity of Catharanthus roseus (Apocynaceae) crude extracts and pure compounds against human colorectal carcinoma cell line. Int J Pharmacol 6:43–47

    Article  CAS  Google Scholar 

  • Siddiqui ZH, Mujib A (2016) Accumulation of vincristine in calcium chloride elicitated Catharanthus roseus cultures. J Nat Prod 2:307–315

    Google Scholar 

  • Siegel RK (1976) Herbal intoxication. Pscyhoactive effects from herbal cigarettes, tea and capsules. J Am Med Assoc 236:473–476

    Article  CAS  Google Scholar 

  • Singh SM, Vats PS, Suri R, Shyam MML, Kumari AR, Sridharan KS (2001) Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotoxin induced diabetic rats. J Ethnopharmacol 76:269–277

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kharb P, Rani K (2011) Rapid micropropagation and callus induction of Catharanthus roseus in vitro. World J Agric Res 7:699–704

    Google Scholar 

  • Singh A, Singh PK, Singh RK (2014) Antidiabetic and wound healing activity of Catharanthus roseus L. in streptozotocin-induced diabetic mice. Am J Phytomed Clin Ther 2:686–692

    CAS  Google Scholar 

  • Smith JI, Smart M, Misawa WG, Kuurz W, Tallevi SG, Dicosmo F (1987) Increased accumulation of indole alkaloids by some cell lines of Catharanthus roseus in response to addition of vanadyl of vanadyl sulphate. Plant Cell Rep 6:142–145

    Article  CAS  PubMed  Google Scholar 

  • Sottomayor M, Lopez-Serrano M, Dicosmo F, Ros Barcelo A (1998) Purification and characterization of alpha-3′, 4′-anhydrovinblastine synthase (peroxidase-like) from Catharanthus roseus (L.) G. Don. FEBS Lett 428:299–303

    Article  CAS  PubMed  Google Scholar 

  • Spencer CF, Koniuszy FR, Rogers EF (1949) Survey of plants for antimalarial activity. Lloydia 10:145–174

    Google Scholar 

  • Srivastava NK, Srivastava AK (2007) Influence of gibberellic acid on CO2 metabolism, growth and production of alkaloids in Catharanthus roseus. Photosynthetica 45:156–160

    Article  CAS  Google Scholar 

  • Stevens L, Blom T, Verpoorte R (1993) Sucellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep 12:573–576

    Article  CAS  PubMed  Google Scholar 

  • Sutrisna E (2015) Catharanthus roseus (Tapak Dara): “A controversial” medicinal plant in Indonesia. Int J Res Ayurveda Pharm 6:629–633

    Article  CAS  Google Scholar 

  • Svoboda GH (1966) The role of the alkaloids of Catharanthus roseus (L.) G.don (Vinca rosea) and their derivatives in cancer chemotherapy Z Plants: The Potentials for Extracting Protein, Medicines, and Other Useful Chemicals-Workshop Proceedings. Indianapolis, India, pp 154–169

    Google Scholar 

  • Svoboda GH, Blake DA (1975) The phytochemistry and pharmacology of Catharanthus roseus. In: Taylor WI, Farnsworth NR (eds) The Catharanthus alkaloids, botany, chemistry, pharmacology and clinical use, pp 45–83

    Google Scholar 

  • Swanberg A, Dai W (2008) Plant regeneration of periwinkle (Catharanthus roseus) via organogenesis. J Hort Sci 43:832–836

    Google Scholar 

  • Swanston-Flatt SK, Day C, Flatt PR, Gould BJ, Bailey CJ (1989) Glycemic effects of traditional European plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetes Res 10:69–73

    CAS  PubMed  Google Scholar 

  • Taafari IJ, Fowler MK, Thaman RR (2006). Traditional medicine of the Marshell islands. The women, the plants, the treatments Catharanthus roseus (L.) G. Don Madagascar periwinkle. IPS Publications, University of the South Pacific Suva, Fiji, pp 211–212

    Google Scholar 

  • Taha HS, El-Bahr MK, Seif-El-Nasr MM (2009) In vitro studies on Egyptian Catharanthus roseus (L.). Effect of biotic and abiotic stress on indole alkaloids production. J Appl Sci Res 5:1826–1831

    CAS  Google Scholar 

  • Taha HS, Shams KA, Nazif NM, El-Nasr SMM (2014) In vitro studies on Egyptian Catharanthus roseus (L.) G. Don. Impact of stirred reactor physical factors on achievement of cells proliferation and vincristine andvinblastine accumulation. Res J Pharm Biol Chem Sci 5:330–340

    Google Scholar 

  • Tallevi SG, Dicosmo F (1988) Stimulation of indole alkaloid content in vanadium-treated Catharanthus roseus suspension cultures. Centre for Plant Biotechnology, Department of Botany, University of Toronto, Ontario M5S 1A1, Canada. Planta Med 54:149–152

    Article  CAS  PubMed  Google Scholar 

  • Ten Hoopen HJG, Gulik VWM, Schlatmann JE, Moreno PRH, Vinke JL, Heijnen JJ, Vepoorte R (1994) Ajmalicine production by cell cultures of Catharanthus roseus: from shake flaske to bioreactor. Plant Cell Tiss Org Cult 38:85–89

    Article  Google Scholar 

  • Thingujam D, Rekha K, Megala J, Usha B (2015) Antioxidant and anticancer properties of Catharanthus pusillus. Int J Adv Chem Sci Appl 3:48–51

    Google Scholar 

  • Thompson W (1976) Herbs that heal. J Roy Coll Gen Pract 26:365–370

    CAS  Google Scholar 

  • Tiong SH, Looi CY, Hazrina H, Aditya A, Javad PM, Wong WF, Cheah SC, Rais MM, Awang K (2013) Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules 18:9770

    Article  CAS  PubMed  Google Scholar 

  • Toivonen L, Ojala M, Kauppinen V (1989) Studies on the optimization of growth and indole alkaloids production by hairy roots cultures of Catharanthus roseus. Biotechnol Bioeng 37:673–680

    Article  Google Scholar 

  • Tzin V, Galli G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3:956–972

    Article  CAS  PubMed  Google Scholar 

  • Valluri JV (2009) Bioreactor production of secondary metabolites from cell cultures of periwinkle and sandalwood. Methods Mol Biol 547:325–335

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Flota F, De Carolis E, Alarco AM, De Luca V (1997) Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don. Plant Mol Biol 34:935–948

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Flota FA, De Luca V (1998) Developmental and light regulation of desacetoxyvindoline 4-hydroxylase in Catharanthus roseus (L.) G. Don. Evidence of a multilevel regulatory mechanism. Plant Physiol 17:1351–1361

    Article  Google Scholar 

  • Vazquez-Flota F, Hernandez-Dominguez E, Lourdes D, Miranda-Ham M, Monforte-Gonzalez M (2009) A differential response to chemical elicitors in Catharanthus roseus in vitro cultures. Biotechnol Lett 31:591–595

    Article  CAS  PubMed  Google Scholar 

  • Veau B, Courtois M, Oudin A, Chenieux JC, Rideau M, Clastre M (2000) Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim Biophys Acta 1517:159–116

    Article  CAS  PubMed  Google Scholar 

  • Vega-Avila E, Cano-velasco JL, Alarcon-Anguilar FJ, Fajardo Ortiz MC, Almanza-perez JC, Roman Ramos R (2012) Hypoglycemic activity of aqueous extracts from Catharanthus roseus. Evid Based Complement Altern Med 2012:934528

    Article  Google Scholar 

  • Verma P, Mathur AK (2011) Direct shoot bud organogenesis and plant regeneration from pre-plasmolysed leaf explants in Catharanthus roseus. Plant Cell Tiss Org Cult 106:401–408

    Article  CAS  Google Scholar 

  • Verma A, Laakso I, Seppanen-Laakso T, Huhtikangas A, Marja-Liisa RML (2007) A simplified procedure for indole alkaloid extraction from Catharanthus roseus combined with a semi-synthetic production process for vinblastine. Molecules 12:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Mathur AK, Singh A, Srivastava A, Masood N, Luqman Upadhyaya M, Mathur A (2012a) Co-culturing of Catharanthus roseus, Vinca major and Rauwolfia serpentine cell suspensions in shake flask and bioreactor: production of a novel alkaloid with antioxidant potential. J Med Plant Res 6:4978–4988

    Article  CAS  Google Scholar 

  • Verma A, Singh R, Singh S (2012b) Improved alkaloid content in callus cultures of Catharanthus roseus. Bot Serb 36(2):123–130

    Google Scholar 

  • Verma P, Mathur AK, Masood N, Luqman S, Shanker K (2013) Tryptophan over-producing cell suspensions of Catharanthus roseus (L) G. Don and their up-scaling in stirred tank bioreactor: detection of a phenolic compound with antioxidant potential. Protoplasma 250:371–380

    Google Scholar 

  • Verpoorte R, Moreno PRH, Heijden R (1993) Secondary metabolismin plants and plant cell cultures of some terpenoids indole alkaloid producing plants. Abstract. XV International Botanical Congress, Yokohama, Japan

    Google Scholar 

  • Verpoorte R, Heijden R, Moreno PRH (1997) Biosynthesis of terpenoid indole alkaloids in Catharanthus roseus cells. In: Cordell GA (ed) The alkaloids, vol 49. Academic, San Diego, pp 221–229

    Google Scholar 

  • Virmani OP, Srivastava GN, Singh P (1978) Catharanthus roseus—the tropical periwinkle. Ind Drugs 15:231–252

    Article  CAS  Google Scholar 

  • Wagay SA, Dwivedi SD, Sharma DM, Mushtaq Ahmad JT (2013) Antimicrobial activity of Catharanthus roseus. Chem Mater Res 3:61–64

    Google Scholar 

  • Wagner F, Vogelmann H (1977) Cultivation of plant tissue cultures in bioreactors and formation of secondary products. In: Barz W, Reinhard E, Zeuk MH (eds) Plant tissue culture and its biotechnological application. Springer, Berlin, pp 245–252

    Chapter  Google Scholar 

  • Wang S, Zheng Z, Weng Y, Yu Y, Zhang D, Fan W, Dai R, Hu Z (2004) Angiogenesis and antiangiogenesis activity of Chinese medicinal herbal extracts. Life Sci 74:2467–2478

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Liu ZP, Liu L, Liu C (2008) Effects of NaCl on the growth and alkaloid content of Catharanthus roseus seedlings. J Appl Ecol 19:2143–2148

    CAS  Google Scholar 

  • Washington DC (1983) Anticancer drug from the Madagasar periwinkle. The Potentials for Extracting Protein, Medicines and Other Useful Chemicals-Workshop Proceedings. Office of Technology Assessment, US Congress, pp 23–34

    Google Scholar 

  • Webb LJ (1984) Guide to medicinal and poisonous plants of Queensland. Council for Scientific and Industrial Research Bull, Melbourne, p 232

    Google Scholar 

  • Whitmer S, Verpoorte R, Canel C (1998) Influence of auxins on alkaloid accumulation by a transgenic cell line of Catharanthus roseus. Plant Cell Tiss Org Cult 53:135–141

    Article  CAS  Google Scholar 

  • Whitmer S, Heijden R, Verpoorte R (2002) Effect of precursorfeeding on alkaloid accumulation by a tryptophan decarboxylaseover-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203

    Article  CAS  PubMed  Google Scholar 

  • Widowati W, Mozef T, Risdian C, Yellianty Y (2013) Anticancer and free radical scavencing potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines. Oxid Antioxid Med Sci 2:137–142

    Article  Google Scholar 

  • Yahia A, Kevers C, Gaspar T, Chenieux JC, Creche JR (1998) Cytokinins and ethylene stimulate indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus by two distinct mechanisms. Plant Sci 133:9–15

    Article  CAS  Google Scholar 

  • Yang LL, Yen KY, Kiso Y (1987) Antihepatotoxic actions of formosan plant drugs. J Ethnopharmacol 19:103–110

    Article  CAS  PubMed  Google Scholar 

  • Yao XG, Chen F, Li P, Quan L, Chen J, Yu L, Ding H, Li C, Chen L, Gao Z, Wan P, Hu L, Jiang H, Shen X (2013) Natural product vindoline stimulates insulin secretion and efficiently ameliorates glucose homeostasis in diabetic murine models. J Ethnopharmacol 150:285–297

    Article  CAS  PubMed  Google Scholar 

  • Yuag F, Wang Q, Wang G, Zao J, Tian Y, Tang K (2011) An efficient based somatic embryogenesis based plant regeneration from the hypocotyls of Catharanthus roseus. Afr J Biotechnol 10:14786–14795

    Google Scholar 

  • Yuan YJ, Hu ZD (1994) Effect of residual medium on Catharanthus roseus callus and suspension cell culture. Plant Physiol Commun 29:185–187

    Google Scholar 

  • Zaguirre JC (1944) Guide notes of bed-size preparations of most common local (Philippines) medicinal plants

    Google Scholar 

  • Zenk MK, El-Shage E, Arens H, Stockigt J, Weiler EW, Deus B (1977) Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharathus roseus. In: Barz W, Reinhard E, Zeuk MH (eds) In plant tissue culture and its biotechnol applications. Springer, Berlin, pp 27–43

    Chapter  Google Scholar 

  • Zhang X, Brotherton JE, Widholm JM (2015) Co-expression of the tobacco anthranilate synthase β subunit with its feedback-insensitive α subunit as a selectiable marker that also markedly increases the free tryptophane content. In Vitro Cell Dev Biol 51:564–570

    Article  CAS  Google Scholar 

  • Zhao J, Verpoorte R (2007) Manipulating indole alkaloids production by catharathus roseus cell cultures in bioreactor: from biochemical processing to metabolic engineering. Phytochem Rev 6:435–457

    Article  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q (2000a) Improved alkaloid production in Catharanthus roseus suspension cell cultures by various chemicals. Biotechnol Lett 22:509–514

    Article  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q (2000b) Enhanced ajmaline production in Catharanthus roseus cell cultures by combined elicitor treatment: from shake flask to 20L airlift bioreactor. Biotechnol Lett 22:509–514

    Article  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q (2001a) Effects of light and plant growth regulators on the biosynthesis of vindoline and other indole alkaloids in Catharanthus roseus callus cultures. Plant Growth Regul 33:43–49

    Article  CAS  Google Scholar 

  • Zhao J, Hu Q, Guo YQ, Zhu WH (2001b) Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Appl Microbiol Biotechnol 55:693–698

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhu WH, Hu YQ (2001c) Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzyme Microb Technol 28:673–681

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Hu Q, Guo YQ, Zhu WH (2001d) Elicitor-induced indole alkaloid biosynthesis in Catharanthus roseus cell cultures is related to Ca2+ influx and the oxidative burst. Plant Sci 16:423–431

    Article  Google Scholar 

  • Zhao J, Zhu W, Hu Q, Guo Y (2001e) Compact Callus cluster suspension cultures of Catharanthus roseus with enhanced indole alkaloid biosynthesis. In Vitro Cell Dev Biol 37:68–72

    Article  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q, He XW (2001f) Enhanced indole alkaloid production in suspension compact callus clusters of Catharanthus roseus: impacts of plant growth regulators and sucrose. Plant Growth Regul 33:33–41

    Article  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Wang M, Wen W, Yu R (2015) Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus. Pharmacogn Rev 9:24–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University Grants Commission (UGC), New Delhi, for providing meritorious fellowship to the first author, and emeritus fellowship to the corresponding author. The authors are also thankful to Mr. S. Parthibhan and Mr. R.G. Baradwaj, Department of Plant Science, Bharathidasan University for their valuable suggestions in constructing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Senbagalakshmi, P., Rao, M.V., Senthil Kumar, T. (2017). In Vitro Studies, Biosynthesis of Secondary Metabolites and Pharmacological Utility of Catharanthus roseus (L.) G. Don.: A Review. In: Naeem, M., Aftab, T., Khan, M. (eds) Catharanthus roseus. Springer, Cham. https://doi.org/10.1007/978-3-319-51620-2_8

Download citation

Publish with us

Policies and ethics