Skip to main content

Potential of Catharanthus roseus (L.) in Phytoremediation of Heavy Metals

Abstract

Phytoremediation is an environmental-friendly technology that exploits a plant’s ability to remove contaminants for pollution prevention, control, and remediation from the environment. Plants are unique organisms equipped with remarkable metabolic and absorption capabilities as well as transport systems that can take up nutrients or contaminants selectively from the growth matrix, soil, or water. Plant species selection is a critical management decision for phytoremediation. Biosolutions are the best tools for all types of pollutions in future. Phytoremediation is one of the promising biosolutions for soil pollution. The earlier studies emphasize need for selecting more and more species for reclamation of soil quality through phytoremediation. The present study is an attempt to test the potential of the Catharanthus roseus species in the removal of heavy metals from the soil. The aim of the present study was to evaluate the metal accumulation capacity of the selected plant species. The heavy metals (lead, nickel, zinc, cadmium, and chromium) were used. Aqueous solutions of these metals added to the plant samples on alternate days for 60 days (2 months). After every 20 days, plant samples were collected from each pot, then dried in a hot air oven and powdered by a mortar and pestle. About 1 g of the powder from each part of the sample was taken for metal analysis by AAS. Catharanthus roseus was found to be a good accumulator of lead, nickel, zinc, cadmium and chromium. On consolidation of the results obtained the species can be recommended for the phytoextraction of lead, nickel, zinc, cadmium, and chromium contaminated soils.

Keywords

  • Heavy metals
  • Phytoremediation
  • Bioconcentration factor
  • Translocation factor

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-51620-2_15
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-51620-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Agrawal V, Sharma K (2006) Phototoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysentrica. Biol Plant 50:307–310

    CAS  CrossRef  Google Scholar 

  • Ahmad R, Mishra N (2014) Evaluation of Phytoremediation potential of Catharanthus roseus with respect to chromium contamination. Am J Plant Sci 5:2378–2388

    CAS  CrossRef  Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97:111–117

    CAS  CrossRef  Google Scholar 

  • Baker AJM (1981) Accumulators and excluder-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  CrossRef  Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    CAS  CrossRef  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for Phytoremediation of metal-polluted soils. In: Terry N, Banuelos GS (eds) Phytoremediation of contaminated soil and water Florida. Lewis Publishers, Boca Raton, pp 85–107

    Google Scholar 

  • Benzarti S, Mohri S, Ono Y (2008) Plant response to heavy metal toxicity: comparative study between the Hyperaccumulator Thlaspi caerulescens (ecotype ganges) and nonaccumulator plants: lettuce, radish, and alfalfa. Environ Toxicol 23:607–616

    CAS  CrossRef  PubMed  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    CrossRef  Google Scholar 

  • Blaylock MJ, Huang JW (2000). Phytoextraction of metals. In: I. Raskin and B.D. Ensley (eds) Phytoremediation of toxic metals using plants to clean up the environment. Wiley: New York. pp. 53–70

    Google Scholar 

  • Breckle CW (1991) Growth under heavy metals. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 351–373

    Google Scholar 

  • Bu Olayan AH, Thomas BV (2009) Translocation and bioaccumulation of trace metals in desert plants of Kuwait Governorates. Res J Environ Sci 3(5):581–588

    CAS  CrossRef  Google Scholar 

  • Chowdhury ASMHK, Das P, Sarkar I, Islam AL, Parvin F, Islam Z, Faris M, Cui S, Zhou Q, Chao L (2015) Potential hyper-accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, Northeast China. Environ Geol 51:1043–1048

    Google Scholar 

  • Cui S, Zhou Q, Chao L (2007) Potential hyper-accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environ Geol 51:1043–1048

    CAS  CrossRef  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    CAS  CrossRef  Google Scholar 

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130

    CAS  CrossRef  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    CAS  CrossRef  Google Scholar 

  • Ensley BD (2000) Phytoremediation for toxic metals—using plants to clean-up the environment. In: Raskin I, Ensley BD (eds) Rational for use of phytoremediation. Wiley, New York, pp 3–13

    Google Scholar 

  • Fulekar MH, Singh A, Thorat V, Kaushik CP, Eapen S (2010) Phytoremediation of 137 Cs from low level nuclear waste using Catharanthus roseus. Indian J Pure Appl Phys 48:516–519

    CAS  Google Scholar 

  • Gamble JS (2008) Flora of the Presidency of Madras. Bishen Singh Mahendra Pal Singh Publishers, Dehra Dun

    Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    CAS  CrossRef  PubMed  Google Scholar 

  • Gimeno Gatcia E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92:19–25

    CrossRef  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phyto extraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    CAS  CrossRef  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace Elements in Soils and Plants. CRC Press, Boca Raton, London

    Google Scholar 

  • Kim B, Oh E, So J, Ahn Y, Koh S (2003) Plant terpene-induced expression of multiple aromatic ring hydroxylation oxygenase genes in Rhodococcus sp. strain T104. J Microbiol 41:349

    CAS  Google Scholar 

  • Knasmuller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A, God R, Kundi M (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutat Res 420:37–48

    CAS  CrossRef  PubMed  Google Scholar 

  • Kord B, Mataji A, Babaie S (2010) Pine (Pinus Elda rica Medw.) needles as indicator for heavy metals pollution. Int J Environ Sci Tech 7(1):79–84

    CAS  CrossRef  Google Scholar 

  • Kumar N (1984) Effect of Zn X P fertilization on the growth of soyabean (Glycin max L.). M.Sc. thesis, C.S. Azad University of Agriculture and Technology, Kanpur, UP, India

    Google Scholar 

  • Lazaro JD, Kidd PS, Martinez CM (2006) A phytogeochemical study of the Trasos Montes region (NE Portugal): possible species for plant-based soil remediation technologies. Sci Total Environ 354:265–277

    CrossRef  Google Scholar 

  • Li MS, Luo YP, Su ZY (2007) Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environ Pollut 147:168–175

    CAS  CrossRef  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that accumulates arsenic. Nature 409:579

    CAS  CrossRef  PubMed  Google Scholar 

  • Majer BJ, Tscherko D, Paschke A (2002) Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutat Res 515:111–124

    CAS  CrossRef  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. New York, Oxford University Press. p. 406

    Google Scholar 

  • McIntyre T (2001) PhytoRem: A Global CD-ROM database of aquatic and terrestrial plants that sequester, accumulate, or hyperaccumulate heavy metals. Hull: Environment Canada

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    CAS  CrossRef  PubMed  Google Scholar 

  • Misra N, Gupta AK (2006) Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J Plant Physiol 163:11–18

    CAS  CrossRef  PubMed  Google Scholar 

  • Nriagu JO (1979) Production and uses of mercury. In: Nriagu JO (ed) The biogeochemistry of mercury in the environment. Elsevier/North Holl and Biomedical Press, Amsterdam

    Google Scholar 

  • Oh K, Li T, Cheng HY, Xie Y, Yonemochi S (2013) Development of profitable phytoremediation of contaminated soils with biofuel crops. J Environ Protect 4:58–64

    CAS  CrossRef  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126

    CAS  CrossRef  Google Scholar 

  • Pandey S, Gupta K, Mukherjee AK (2010) Impact of cadmium and lead on Catharanthus roseus -A phytoremediation study. J Environ Biol 28:655–662

    Google Scholar 

  • Prasad MNV (2003) Metal hyperaccumulators in plants- biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:276–372

    CrossRef  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28:393–404

    CAS  CrossRef  Google Scholar 

  • Raskin I, Nanda Kumar PBA, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    CAS  CrossRef  Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet L, Raskin L (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13(2):468–474

    CAS  CrossRef  PubMed  Google Scholar 

  • Sekabira K, Oryem Origa H, Basamba TA, Mutumba G, Kakudidi E (2011) Application of algae in biomonitoring and phytoextraction of heavy metals contamination in urban stream water. Int J Environ Sci Tech 8:115–128

    CAS  CrossRef  Google Scholar 

  • Srivastava NK, Srivastava AK (2010) Influence of some heavy metals on growth alkaloid content and composition in Catharanthus roseus L. Indian J Pharmaceut Sci 72:775–778

    CAS  CrossRef  Google Scholar 

  • Subhashini V, Swamy AVVS (2015) Phytoremediation of lead, cadmium and chromium contaminated soils using selected weed plants. Acta Biologica Indica 4:205–212

    Google Scholar 

  • Wang XJ, Chen L, Xia SQ, Zhao JF, Chovelon JM, Renault NJ (2006) Biosorption of Cu (II) and Pb (II) from aqueous solutions by dried activated sludge. Miner Eng 19:968–971

    CAS  CrossRef  Google Scholar 

  • Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T (2009) Bioaccumulation and Phytotranslocation of Arsenic, chromium and zinc by Jatropa curcas L, impact of dairy sludge and biofertilizer. Biores Technol 100(20):4616–4622

    Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    CAS  CrossRef  PubMed  Google Scholar 

  • Zhang S, Chen M, Li T, Xu X, Deng L (2010) A newly found cadmium accumulator Malva sinensis Cavan. J Hazard Material 173:705–709

    CAS  CrossRef  Google Scholar 

  • Zheng Z, Wu M (2004) Cadmium treatment enhances the production of alkaloid secondary metabolites of Catharanthus roseus. Plant Sci 166:507–514

    Google Scholar 

  • Zornoza P, Robles S, Martin N (1999) Alleviation of nickel toxicity by ammonium supply to sunflower plants. Plant and Soil 208:221–226

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Subhashini or A. V. V. S. Swamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Subhashini, V., Swamy, A.V.V.S. (2017). Potential of Catharanthus roseus (L.) in Phytoremediation of Heavy Metals. In: Naeem, M., Aftab, T., Khan, M. (eds) Catharanthus roseus. Springer, Cham. https://doi.org/10.1007/978-3-319-51620-2_15

Download citation