Disrupting Mobility pp 213-237 | Cite as
Disrupting Mobility: Decarbonising Transport?
Abstract
The transport sector urgently needs to identify decarbonisation pathways. Global demand for mobility is growing. The same applies for emissions from transport, with much of this growth taking place in emerging economies. Numerous scenario studies attempt to determine efficient strategies to decarbonise the transport sector. In this chapter we provide a comprehensive overview of scenario studies and reveal a wide spectrum of options to decarbonisation. Differences in projected GHG emissions, primary energy use and distances travelled are analysed. A typology of scenario studies is elaborated which reveals large differences in possible pathways.
Keywords
Decarbonisation Scenarios GHG emissions Primary energy use Transport MobilityNotes
Acknowledgments
Several informal reviewers and collaborators commented on a number of previous drafts of this paper. The authors would like to thank Axel Volkery, Cathy Marcherais, Lukas Neckermann and Veronique van Acker for their helpful comments and suggestions.
The authors gratefully acknowledge the support of Stiftung Mercator for the preparation of this chapter.
References
- 1.International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD): World energy outlook 2015, Paris (2015)Google Scholar
- 2.World Health Organization (WHO): Burden of disease from ambient air pollution for 2012. Genf (2014)Google Scholar
- 3.Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núnez, X., D’Agosto, M., Dimitriu, D., Meza, M. J. F., Fulton, L., Kobayashi, S., Lah, O., McKinnon, A., Newman, P., Ouyang, M., Schauer, J. J., Sperling, D., Tiwari, G.: Transport. In Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment of the Intergovernmental Panel on Climate Change, pp. 599–670, Cambridge University Press, New York (2014)Google Scholar
- 4.European Parliament: The world is changing. Transport, too, Brussels (2016)Google Scholar
- 5.Hinkeldein, D., Schönduwe, R., Graff, A., Hoffmann, C.: Who would use integrated sustainable mobility services—and why? In Sustainable Urban Transport, No. 7, Emerald, pp. 177–203 (2015)Google Scholar
- 6.Canzler, W., Knie, A.: Mobility in the age of digital modernity: why the private car is losing its significance, intermodal transport is winning and why digitalisation is the key. Appl Mobilities. 1–12 (2016)Google Scholar
- 7.Organisation for Economic Co-Operation and Development (OECD), International Transport Forum (ITF): ITF transport outlook 2015, Paris (2014)Google Scholar
- 8.International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD): World energy outlook 2002, Paris (2002)Google Scholar
- 9.International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD), World energy outlook 2004. Paris (2004)Google Scholar
- 10.World Business Council for Sustainable Development: Mobility 2030: meeting the challenges to sustainability, Geneva (2004)Google Scholar
- 11.ICCR, Adelphi Research, University of Cardiff, NESTEAR, ALAMO Online: Foresight for transport. A Foresight Exercise to Help Forward Thinking in Transport and Sectoral Integration, Wien (2004)Google Scholar
- 12.World Business Council for Sustainable Development: Pathways to energy & climate change. Geneva (2004)Google Scholar
- 13.Department for Transport: Visioning and Backcasting for UK Transport Policy (VIBAT). London (2006)Google Scholar
- 14.International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD): World energy outlook 2005. Middle East and North Africa Insights, Paris (2005)Google Scholar
- 15.TRAMP—Traffic and Mobility Planning GmbH, Deutsches Institut für Urbanistik (Difu), Institut für Wirtschaftsforschung Halle (IWH), Szenarien der Mobilitätsentwicklung unter Berücksichtigung von Siedlungsstrukturen bis 2050, Magdeburg (2006)Google Scholar
- 16.Curry, A., Hodgson, T., Kelnar, R., Wilson, A.: Intelligent infrastructure futures. The Scenarios—Towards 2055, London (2006)Google Scholar
- 17.International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD): World energy outlook 2006, Paris (2006)Google Scholar
- 18.Acatech, Mobilität 2020. Perspektiven für den Verkehr von morgen, München, Berlin (2006)Google Scholar
- 19.Lemmer, K.: acatech. Handlungsfeld Mobilität. Infrastrukturen sichern. Verkehrseffizienz verbessern. Exportchancen ergreifen, Braunschweig, München, Berlin (2011)Google Scholar
- 20.Ribeiro, S. K., Kobayashi, S., Beuthe, M., Gasca, J., Greene, D., Lee, D. S., Muromachi, Y., Newton, P. J., Plotkin, S., Sperling, D., Wit, R., Zhou, P. J., Hata, H., Sims, R., Skjolsvik, K. O.: Transport and its infrastructure. In Climate Change 2007, Mitigation of Climate Change, Cambridge, New York (2007)Google Scholar
- 21.World Energy Council: Transport technologies and policy scenarios to 2050. London (2007)Google Scholar
- 22.Uyterline, M.A., Ybema, J.R., van den Brink, R.: A sustainable energy system in 2050: promise or possibility? (2007)Google Scholar
- 23.European Commission: World energy technology outlook 2050: WETO H2. Brussels (2007)Google Scholar
- 24.Meyer, I., Leimbach, M., Jaeger, C.C.: International passenger transport and climate change: a sector analysis in car demand and associated emissions from 2000 to 2050. Energy Policy 35(12), 6332–6345 (2007)CrossRefGoogle Scholar
- 25.Energy Information Administration: International energy outlook 2007. Washington, DC (2007)Google Scholar
- 26.International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD): World energy outlook 2007. China and India Insights. Paris (2007)Google Scholar
- 27.European Commission (Joint Research Centre Institute for Environment and Sustainability): Backcasting Approach for Sustainable Mobility. Luxembourg (2008)Google Scholar
- 28.Öko-Institut, I. f. E.-u. K. Forschungszentrum Jülich, Systemforschung und Technologische Entwicklung (IEK-STE), Deutsches Institut für Wirtschaftsforschung (DIW), Fraunhofer Institut für System- und Innovationsforschung ISI, Politikszenarien für den Klimaschutz IV. Szenarien bis 2030, Dessau-Roßlau (2008)Google Scholar
- 29.Saxena, S., Banister, D.: Breaking the trend. Visioning and Backcasting for Transport un India & Delhi, Delhi, London (2008)Google Scholar
- 30.International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD), World Energy Outlook 2008, Paris (2008)Google Scholar
- 31.WWF Deutschland (WWF), Prognos AG, Öko-Institut e.V., Modell Deutschland. Klimaschutz bis 2050: Vom Ziel her denken, Basel, Berlin (2009)Google Scholar
- 32.Öko-Institut, DLR Institut für Verkehrsforschung, Institut für Energie- und Umweltforschung Heidelberg (ifeu), Deutsches Biomasseforschungszentrum gGmbH (DBFZ), Technische Universität Dresden (Professur für Verkehrsströmungslehre), Stoffstromanalyse nachhaltige Mobilität im Kontext erneuerbarer Energien bis 2030. Endbericht Teil 1: Methodik und Datenbasis, Berlin (2009)Google Scholar
- 33.World Energy Council: European climate change policy beyond 2012, London (2009)Google Scholar
- 34.McKinsey & Company: Roads Toward a Low-Carbon Future: Reducing Co2 Emissions from Passenger Vehicles in the Global Road Transportation System. New York City (2009)Google Scholar
- 35.Netherlands Environmental Assessment Agency (PBL): Getting into the Right Lane for 2050. Bilthoven (2009)Google Scholar
- 36.International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD), World Energy Outlook 2009, Paris (2009)Google Scholar
- 37.Prognos AG, EWI - Energiewirtschaftliches Institut an der Universität zu Köln, GWS - Gesellschaft für wirtschaftliche Strukturforschung, Energieszenarien für ein Energiekonzept der Bundesregierung, Basel, Köln, Osnabrück (2010)Google Scholar
- 38.Anable, J., Brand, C., Tran; M., Eyre; N.: Modelling transport energy demand: a socio-technical approach. Energy Policy. 41(0), 125–138 (2012)Google Scholar
- 39.Hansen, P., Matthes, F. C.: Politikszenarien für den Klimaschutz V – auf dem Weg zum Strukturwandel, Treibhausgas-Emissionsszenarien bis zum Jahr 2030, in: Schriften des Forschungszentrums Jülich. Reihe Energie und Umwelt, No. 62, Jülich (2010)Google Scholar
- 40.Schade, W., Krail, M.: iTREN-2030: Experiences and results for integrated technology, energy and transport policy assessment. Final Report and Deliverable 6 of iTREN-2030 (Integrated transport and energy baseline until 2030). Project co-funded by European Commission 6th RTD Programme. Fraunhofer-ISI, Karlsruhe (2007)Google Scholar
- 41.Schade, W., Helfrich, N., Peters, A.: A Transport Scenario for Europe Until 2050 in a 2-Degree World. In: 12th World Conference of Transport Research, 11–15.07.2010, Lissabon (2010)Google Scholar
- 42.International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD), World Energy Outlook 2010, Paris (2010)Google Scholar
- 43.Skinner, I., Hodgson, I., van Essen, H., Smokers, R., Hill, N.: Towards the decarbonisation of the EU’s transport sector by 2050. Final Report, London (2010)Google Scholar
- 44.Deutsches Zentrum für Luft- und Raumfahrt, I. f. T. T. D., Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), Ingenieurbüro für neue Energien (IFNE), Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global, Stuttgart, Kassel (2012)Google Scholar
- 45.Zimmer, W., Hacker, F., Rausch, L., Fritsche, U., Cyganski, R., Justen, A., Knitschky, G., Lischke, A., Mehlin, M., Müller, S., Schade, W.: Weiterentwicklung des Analyseinstruments Renewbility. Renewbility II - Szenario für einen anspruchsvollen Klimaschutzbeitrag des Verkehrs, Dessau-Roßlau (2013)Google Scholar
- 46.Kishimoto, P.N., Paltsev, S., Karplus, V.J.: The future energy and GHG emissions impact of alternative personal transportation pathways in China. Cambridge (2012)Google Scholar
- 47.Girod, B., van Vuuren, D.P., Deetman, S.: Global travel within the 2 °C climate target. Energy Policy 45, 152–166 (2012)CrossRefGoogle Scholar
- 48.Girod, B., van Vuuren, D.P., de Vries, B.: Influence of travel behavior on global CO2 emissions. Transp. Res. Part A Policy Pract. 50, 183–197 (2013)CrossRefGoogle Scholar
- 49.Zmud, J., Ecola, L., Phleps, P., Feige, I.: The future of mobility. Scenarios for the United States in 2030, Santa Monica (2014)Google Scholar
- 50.Organisation for Economic Co-Operation and Development (OECD), International Transport Forum (ITF): ITF transport outlook 2013. Funding Transport, Paris (2014)Google Scholar
- 51.Ahrens, G.-A., Becker, U., Böhmer, T., Richter, F., Wittwer, R.: Potenziale des Radverkehrs für den Klimaschutz. Dresden, Dessau-Roßlau (2013)Google Scholar
- 52.Blanck, R., Kasten, P., Hacker, F., Mottschall, M.: Treibhausgasneutraler Verkehr 2050: Ein Szenario zur zunehmenden Elektrifizierung und dem Einsatz stromerzeugter Kraftstoffe im Verkehr. Abschlussbericht im Auftrag des Umweltbundesamtes zum Forschungsvorhaben “Verkehr 2050 - Entwicklung von Paramtern und Skizzierung eines vereinfachten Energie- und Emissionsszenarios”, Berlin (2013)Google Scholar
- 53.Öko-Institut, I. f. E.-u. K. Forschungszentrum Jülich, Systemforschung und Technologische Entwicklung (IEK-STE),, Deutsches Institut für Wirtschaftsforschung (DIW), Fraunhofer Institut für System- und Innovationsforschung ISI, Politikszenarien für den Klimaschutz VI. Treibhausgas-Emissionsszenarien bis zum Jahr 2030, Freiburg, Dessau-Roßlau (2013)Google Scholar
- 54.Cambridge Econometrics, Ricard-AEA: An Economic Assessment of Low Carbon Vehicles. Cambridge, London (2013)Google Scholar
- 55.Hacker, F., Blanck, R., Hülsmann, F., Kasten, P., Loreck, C., Ludig, S., Mottschall, M., Zimmer, W.: eMobil 2050. Szenarien zum möglichen Beitrag des elektrischen Verkehrs zum langfristigen Klimaschutz. Gemeinsamer Endbericht zu den Vorhaben “Wissenschaftliche Unterstützung bei der Erarbeitung von Szenarien zum möglichen Beitrag der Elektromobilität zum langfristigen Klimaschutz” (FKZ: UM 11 96 106) und “Szenarien zum möglichen Beitrag der Elektromobilität im Güter- und öffentlichen Personenverkehr zum langfristigen Klimaschutz” (FKZ: 16 EM 1001), Berlin (2014)Google Scholar
- 56.Townsend, A.: Re-Programming-Mobility. The Digital Transformation of Transportation in the United States, New York (2014)Google Scholar
- 57.Shell Deutschland Oil, Prognos. Shell Pkw-Szenarien bis 2040, Fakten, Trends und Perspektiven für Auto-Mobilität, Hamburg (2014)Google Scholar
- 58.International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD): World energy outlook 2014. Paris (2014)Google Scholar
- 59.De Koning, A., Huppes, G., Deetman, S.: Scenarios for 2050 for a 2-Degrees World: Using a Four Regions Trade Linked Io-Model With High Sector Detail. CECILIA2050 WP3 Deliverable 3.2, Institute of Environmental Sciences (CML), Leiden University, Leiden (2014)Google Scholar
- 60.U.S. Department of Transportation: Beyond traffic 2045. Trends and Choices, Washington D.C. (2015)Google Scholar
- 61.Öko-Institut, INFRAS Forschung und Beratung, Nutzen statt besitzen: Neue Ansätze für eine collaborative economy, Dessau (2015)Google Scholar
- 62.Organisation for Economic Co-Operation and Development (OECD), International Transport Forum (ITF): Urban mobility system upgrade. How Shared Self-Driving Cars Could Change City Traffic, Paris (2015)Google Scholar
- 63.Stölzle, W., Weidmann, U., Klaas-Wissing, T., Kupferschmid, J., Riegel, B.: Vision Mobilität Schweiz 2050. Zürich, St. Gallen (2015)Google Scholar
- 64.IHS Wien, Umweltbundesamt, TU Wien, DIW Berlin, Öko-Institut, CASE, DEFINE - Development of an evaluation framework for the introduction of electromobility. Synthesebericht, Wien, Dessau, Berlin (2015)Google Scholar
- 65.Creutzig, F.: Evolving narratives of low-carbon futures in transportation. Transp. Rev. 36(3), 341–360 (2016)CrossRefGoogle Scholar
- 66.Capros, P., Paroussos, L., Fragkos, P., Tsani, S., Boitier, B., Wagner, F., Busch, S., Resch, G., Blesl, M., Bollen, J.: European decarbonisation pathways under alternative technological and policy choices: a multi-model analysis. Energy Strategy Rev. 2(3–4), 231–245 (2014)CrossRefGoogle Scholar
- 67.Pindyck, R.S.: The Use and Misuse of Models for Climate Policy. National Bureau of Economic Research Working Paper Series, No. 21097 (2015)Google Scholar
- 68.Avineri, E.: On the use and potential of behavioural economics from the perspective of transport and climate change. J. Transp. Geogr. 24, 512–521 (2012)CrossRefGoogle Scholar
- 69.Marsden, G., Docherty, I.: Insights on disruptions as opportunities for transport policy change. Transp. Res. Part A Policy Pract. 51, 46–55 (2013)CrossRefGoogle Scholar
- 70.Canzler, W., Knie, A.: Brave new mobility world? no energy transition without transport transition, Berlin (2016)Google Scholar
- 71.Kenworthy, J., Newman, P.: The End of Automobile Dependence. How cities are moving beyond car-based planning. Island Press, Washington, Covelo, London (2015)Google Scholar
- 72.Steiner, J., Wappelhorst, S., Graff, A.: Free-Floating E-Carsharing: Integration in Public Transport Without Range Problems. Presented at European Transport Conference, Frankfurt/Main (2014)Google Scholar
- 73.Mitchell, W.J., Borroni-Bird, C.E., Burns, L.D.: Reinventing the Automobile: Personal Urban Mobility for the 21st Century. Cambridge (2010)Google Scholar