Skip to main content

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 5))

Abstract

We provide a quantitative two weight estimate for the dyadic paraproduct π b under certain conditions on a pair of weights (u, v) and b in Carl u, v , a new class of functions that we show coincides with BMO when u = v ∈ A 2 d. We obtain quantitative two weight estimates for the dyadic square function and the martingale transforms under the assumption that the maximal function is bounded from L 2(u) into L 2(v) and v ∈ RH 1 d. Finally we obtain a quantitative two weight estimate from L 2(u) into L 2(v) for the dyadic square function under the assumption that the pair (u, v) is in joint \(\mathcal{A}_{2}^{d}\) and u −1 ∈ RH 1 d, this is sharp in the sense that when u = v the conditions reduce to u ∈ A 2 d and the estimate is the known linear mixed estimate.

In memory of our good friend and mentor Cora Sadosky

The first author was supported by the University of Alabama RGC grant.

The second author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(2015R1C1A1A02037331).

The third author was supported by the AVG program, 459895/2013-3, funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in [54, Corollary 1.4] the statement is not exactly this one. The authors are using a well-known change of variables that we are not using in this paper: their w is our v, their σ is our u −1, their \([w,\sigma ]_{A_{2}^{d}}\) corresponds to our \([\sigma ^{-1},w]_{A_{2}^{d}}\) and hence equals to our \([u,v]_{A_{2}^{d}}\). Finally in their case M(⋅σ) acts on g ∈ L 2 (σ), in our case M acts on f ∈ L 2(u), and clearly g ∈ L 2 (σ) = L 2(u −1) if and only if f = gσ = gu −1 ∈ L 2 (u) with equal norms.

  2. 2.

    The conditions on the function \(\Phi \) are satisfied by the functions \(\Phi (L) = L\log ^{1+\sigma }L\) and Llog Llog log1+σ L (for sufficiently large σ > 0), but not by \(\Phi (L) = L\log L\).

References

  1. O. Beznosova, Linear bound for the dyadic paraproduct on weighted Lebesgue space L 2(w). J. Func. Anal. 255, 994–1007 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. O. Beznosova, Bellman functions, paraproducts, Haar multipliers, and weighted inequalities. Ph.D. dissertation, University of New Mexico, 2008

    Google Scholar 

  3. O. Beznosova, Perfect dyadic operators: weighted T(1) theorem and two weight estimates. J. Math. Anal. Appl. 439 (2), 813–831 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  4. O. Beznosova, A. Reznikov, Equivalent definitions of dyadic Muckenhoupt and Reverse Holder classes in terms of Carleson sequences, weak classes, and comparability of dyadic LlogL and A constants. Rev. Mat. Iberoam. 30 (4), 1191–1190 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Bloom, A commutator theorem and weighted BMO. Trans. Am. Math. Soc. 292 (1), 103–122 (1985)

    Google Scholar 

  6. S.M. Buckley, Summation condition on weights. Mich. Math. J. 40, 153–170 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Cao, K. Li, Q. Xue, A characterization of two weight norm inequality for Littlewood-Paley g λ -function (2015, Preprint). Available at arXiv:1504.07850

    Google Scholar 

  8. R. Coiffman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51, 241–250 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Cotlar, C. Sadosky, On the Helson-Szegö theorem and a related class of modified Toeplitz kernels, in Harmonic Analysis in Euclidean Spaces, ed. by G.Weiss, S. Wainger, vol. 35. Proceedings of Symposia in Pure Mathematics (American Mathematical Society, Providence, 1979), pp. 383–407

    Google Scholar 

  10. M. Cotlar, C. Sadosky, On some L p versions of the Helson-Szegö theorem, in Conference on Harmonic Analysis in Honor of Antoni Zygmund, vols. I, II, Chicago, 1981. Wadsworth Mathematics Series (Belmont, Wadsworth, 1983), pp. 306–317

    Google Scholar 

  11. D. Cruz-Uribe, Two weight norm inequalities for fractional integral operators and commutators (2014, Preprint). Available at arXiv:1412.4157v1

    Google Scholar 

  12. D. Cruz-Uribe, K. Moen, Sharp norm inequalities for commutators of classical operators. Publ. Mat. 56, 147–190 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Cruz-Uribe, J. Martell, C. Pérez, Sharp weighted estimates for classical operators. Adv. Math. 229, 408–441 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Cruz-Uribe, A. Reznikov, A. Volberg, Logarithmic bump conditions and the two weight boundedness of Calderón-Zygmund operators. Adv. Math. 255, 706–729 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. O. Dragičevič, L. Grafakos, M.C. Pereyra, S. Petermichl, Extrapolation and sharp norm estimates for classical operators in weighted Lebesgue spaces. Publ. Mat. 49, 73–91 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. J. García-Cuerva, J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 116 (North-Holland, Amsterdam, 1981)

    Google Scholar 

  17. T. Hänninen, Two weight inequality for vector-valued positive dyadic operators by parallel stopping cubes. To appear in Isr. J. Math.

    Google Scholar 

  18. T. Hänninen, T. Hytönen, K. Li, Two-weight L pL q bounds for positive dyadic operators: unified approach to p ≤ q and p > q. Potential Anal. 45 (3), 579–608 (2016)

    Google Scholar 

  19. H. Helson, G. Szegö, A problem in prediction theory. Ann. Math. Pura. Appl. 51, 107–138 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  20. I. Holmes, M. Lacey, B. Wick, Commutators in the two-weight setting. Math. Ann. (2016). doi:10.1007/s00208-016-1378-1

    Book  MATH  Google Scholar 

  21. I. Holmes, M. Lacey, B. Wick, Bloom’s inequality: commutators in a two-weight setting. Arch. Math. (Basel) 106 (1), 53–63 (2016)

    Google Scholar 

  22. S. Hukovic, S. Treil, A. Volberg, The Bellman function and sharp weighted inequalities for square functions, in Complex Analysis, Operators and Related Topics. Operator Theory, Advances and Applications, vol 113 (Birkaüser, Basel, 2000), pp. 97–113

    Google Scholar 

  23. R. Hunt, B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for the conjugate function and the Hilbert transform. Trans. Am. Math. Soc. 176, 227–252 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Hytönen, The sharp weighted bound for general Calderón-Sygmund Operators. Ann. Math. (2) 175 (3), 1473–1506 (2012)

    Google Scholar 

  25. T. Hytönen, M. Lacey, The A p A inequality for general Calderón-Zygmund operators. Indiana Univ. Math. J. 61, 2041–2052 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. T. Hytönen, K. Li, Weak and strong A p A estimates for square functions and related operators (2015, Preprint). Available at arXiv:1509.00273

    Google Scholar 

  27. T. Hytönen, C. Pérez, Sharp weighted bounds involving A . Anal. PDE 6 (4), 777–818 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Isralowitz, H.K. Kwon, S. Pott, Matrix weighted norm inequalities for commutators and paraproducts with matrix symbols (2015, Preprint). Available at arXiv:1507.04032

    Google Scholar 

  29. T. Iwaniec, A. Verde, On the operator \(\mathfrak{L}f = f\log \vert f\vert \). J. Funct. Anal. 169 (2), 391–420 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. N.H. Katz, M.C. Pereyra, On the two weight problem for the Hilbert transform. Rev. Mat. Iberoam. 13 (01), 211–242 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Lacey, The Linear Bound in A 2 for Calderón-Zygmund Operators: A Survey. Marcinkiewicz Centenary Volume. Banach Center Publications, vol. 95 (Institute of Mathematics of the Polish Academy of Sciences, Warsaw, 2011), pp. 97—114

    Google Scholar 

  32. M. Lacey, The two weight inequality for the Hilbert transform: a primer, in Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2), ed. by M.C. Pereyra, et al. Association for Women in Mathematics Series, vol. 5 (Springer, 2017)

    Google Scholar 

  33. M. Lacey, Two weight inequality for the Hilbert transform: a real variable characterization, II. Duke Math. J. 163 (15), 2821–2840 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Lacey, K. Li, Two weight norm inequalities for the g function. Math. Res. Lett. 21 (03), 521–536 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  35. M. Lacey, K. Li, On A p A estimates for square functions (2015, Preprint). Math. Z. 284, 1211–1222 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Lacey, E. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, The two weight inequality for the Hilbert transform, coronas and energy conditions. Duke Math. J. 163 (15), 2795–2820 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  37. M. Lacey, E. Sawyer, I. Uriarte-Tuero, Two weight inequalities for discrete positive operators (2009, Preprint). Available at arXiv:0911.3437

    Google Scholar 

  38. J. Lai, A new 2-weight estimate for a vector-valued positive operator (2015, Preprint). Available at arXiv:1503.06778

    Google Scholar 

  39. J. Lai, S. Treil, Two weight L p estimates for paraproducts in non-homogeneous setting (2015, Preprint). Available at arXiv:1507.05570

    Google Scholar 

  40. A. Lerner, Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals. Adv. Math. 226, 3912–3926 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Lerner, Mixed A p A r inequalities for classical singular integrals and Littlewood-Paley operators. J. Geom. Anal. 23, 1343–1354 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  42. A. Lerner, K. Moen, Mixed A p A estimates with one supremum. Stud. Math. 219 (3), 247–267 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  43. K. Moen, Sharp one-weight and two-weight bounds for maximal operators. Stud. Math. 194 (2), 163–180 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. J.C. Moraes, Weighted estimates for dyadic operators with complexity. Ph.D. dissertation, University of New Mexico, 2011

    Google Scholar 

  45. J.C. Moraes, M.C. Pereyra, Weighted estimates for dyadic Paraproducts and t-Haar multiplies with complexity (m, n). Publ. Mat. 57, 265–294 (2013)

    Google Scholar 

  46. B. Muckenhoupt, Weighted norm inequalities for the Hardy–Littlewood maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MATH  Google Scholar 

  47. F. Nazarov, A. Reznikov, S. Treil, A. Volberg, A Bellman function proof of the L 2 bump conjecture. J. Anal. Math. 121, 255–277 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  48. F. Nazarov, A. Reznikov, A. Volberg, Bellman approach to the one-sided bumping for weighted estimates of Calderón–Zygmund operators (2013, Preprint). Available at arXiv:1306.2653

    Google Scholar 

  49. F. Nazarov, S. Treil, A. Volberg, The Bellman functions and the two-weight inequalities for Haar Multipliers. J. AMS 12, 909–928 (1999)

    MATH  MathSciNet  Google Scholar 

  50. F. Nazarov, S. Treil, A. Volberg, Two weight estimate for the Hilbert transform and Corona decomposition for non-doubling measures (2004, Preprint). Available at arXiv:1003.11596

    Google Scholar 

  51. F. Nazarov, S. Treil, A. Volberg, Two weight inequalities for individual Haar multipliers and other well localized operators. Math. Res. Lett. 15 (3), 583–597 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. M.C. Pereyra, On the resolvents of dyadic paraproducts. Rev. Mat. Iberoam. 10 (3), 627–664 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  53. M.C. Pereyra, Lecture notes on dyadic harmonic analysis. Contemp. Math. 289, 1–60 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  54. C. Pérez, E. Rela, A new quantitative two weight theorem for the Hardy-Littlewood maximal operator. Proc. Am. Math. Soc. 143, 641–655 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  55. E. Sawyer, A characterization of a two weight norm inequality for maximal functions. Stud. Math. 75 (1), 1–11 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  56. E. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals. Trans. Am. Math. Soc. 308 (2), 533–545 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  57. H. Tanaka, A characterization of two weight trace inequalities for positive dyadic operators in the upper triangular case. Potential Anal. 41 (2), 487–499 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  58. S. Treil, A remark on two weight estimates for positive dyadic operators, in Operator-Related Function Theory and Time-Frequency Analysis Abel Symposia, vol. 9 (Springer, Cham, 2015), pp. 185–195

    Google Scholar 

  59. A. Volberg, A bump theorem for weighted embeddings and maximal operator: the Bellman function approach, in Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2), ed. by M.C. Pereyra, et al. Association for Women in Mathematics Series, vol. 5 (Springer, 2017)

    Google Scholar 

  60. E. Vuorinen, L p(μ) → L q(ν) characterization for well localized operators. J. Fourier Anal. Appl. 22, 1059 (2016). doi:10.1007/s00041-015-9453-7

  61. E. Vuorinen, Two weight L p-inequalities for dyadic shifts and the dyadic square function (2015, Preprint). Available at arXiv:1504.05759

    Google Scholar 

  62. M. Wilson, Weighted inequalities for the dyadic square function without dyadic A . Duke Math. J. 55, 19–49 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  63. M. Wilson, Weighted Littlewood-Paley Theory and Exponential-Square Integrability. Lecture Notes in Mathematics, vol. 1924 (Springer, Berlin, 2008)

    Google Scholar 

  64. J. Wittwer, A sharp estimate on the norm of the martingale transform. Math. Res. Lett. 7, 1–12 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandra Beznosova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s) and the Association for Women in Mathematics

About this paper

Cite this paper

Beznosova, O., Chung, D., Moraes, J.C., Pereyra, M.C. (2017). On Two Weight Estimates for Dyadic Operators. In: Pereyra, M., Marcantognini, S., Stokolos, A., Urbina, W. (eds) Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2). Association for Women in Mathematics Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-51593-9_5

Download citation

Publish with us

Policies and ethics