Skip to main content

Singular Integrals, Rank One Perturbations and Clark Model in General Situation

  • Conference paper
  • First Online:
Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2)

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 5))

Abstract

We start with considering rank one self-adjoint perturbations A α  = A +α( ⋅ , φ)φ with cyclic vector \(\varphi \in \mathcal{H}\) on a separable Hilbert space \(\mathcal{H}\). The spectral representation of the perturbed operator A α is realized by a (unitary) operator of a special type: the Hilbert transform in the two-weight setting, the weights being spectral measures of the operators A and A α .

Similar results will be presented for unitary rank one perturbations of unitary operators, leading to singular integral operators on the circle.

This motivates the study of abstract singular integral operators, in particular the regularization of such operator in very general settings.

Further, starting with contractive rank one perturbations we present the Clark theory for arbitrary spectral measures (i.e. for arbitrary, possibly not inner characteristic functions). We present a description of the Clark operator and its adjoint in the general settings. Singular integral operators, in particular the so-called normalized Cauchy transform again plays a prominent role.

Finally, we present a possible way to construct the Clark theory for dissipative rank one perturbations of self-adjoint operators.

These lecture notes give an account of the mini-course delivered by the authors, which was centered around (Liaw and Treil, J Funct Anal 257(6):1947–1975, 2009; Rev Mat Iberoam 29(1):53–74, 2013; J Anal Math). Unpublished results are restricted to the last part of this manuscript.

To the memory of Cora Sadosky

The work of Constanze Liaw is supported by the Simons Foundation Collaboration Grant for Mathematicians #426258. Work of S. Treil is supported by the National Science Foundation under the grant DMS-1301579.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We did not discuss singular integral operators with vector-valued kernels, but the extension of the theory presented in section “Singular Integral Operators” to the case of kernels with values in \(\mathbb{R}^{d}\) or \(\mathbb{C}^{d}\) is trivial and we omit it.

References

  1. E. Abakumov, C. Liaw, A. Poltoratskiĭ, Cyclic vectors for rank one perturbations and Anderson-type Hamiltonians. J. Lond. Math. Soc. 88 (2), 523–537 (2013)

    Article  MathSciNet  Google Scholar 

  2. M. Aizenman, S. Molchanov, Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157 (2), 245–278 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. A.B. Aleksandrov, Multiplicity of boundary values of inner functions. Izv. Akad. Nauk Armyan. SSR Ser. Math. 22 (5), 490–503, 515 (1987)

    Google Scholar 

  4. A.B. Aleksandrov, Inner functions and related spaces of pseudocontinuable functions. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 170 (1989) Issled. Linein Oper. Teorii Funktsii. 17, 7–33, 321; translation in J. Soviet Math. 63 (2), 115–159 (1993)

    Google Scholar 

  5. A.B. Aleksandrov, On the existence of angular boundary values for pseudocontinuable functions. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222 (1995), Issled. po Linein Oper. i Teor. Funktsii. 23, 5–17, 307; translation in J. Math. Soc. New York 87 (5), 3781–3787 (1997)

    Google Scholar 

  6. A.B. Aleksandrov, Isometric embeddings of coinvariant subspaces of the shift operator. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 232 (1996), Issled. po Linein Oper. i Teor. Funktsii. 24, 5–15, 213; translation in J. Math. Sci. (New York) 92 (1), 3543–3549 (1998)

    Google Scholar 

  7. A.B. Aleksandrov, On the maximum principle for pseudocontinuable functions. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 217 (1994), Issled. po Linein. Oper. i Teor. Funktsii. 22, 16–25, 218; translation in J. Math. Sci. (New York) 85 (2), 1767–1772 (1997)

    Google Scholar 

  8. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Article  Google Scholar 

  9. M. Anshelevich, Bochner-Pearson-type characterization of the free Meixner class. Adv. in Appl. Math. 46, 25–45 (2011). (Special issue in honor of Dennis Stanton)

    Google Scholar 

  10. M. Anshelevich, Two-state free Brownian motions. J. Funct. Anal. 260, 541–565 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.A. Cima, A.L. Matheson, W.T. Ross, in The Cauchy Transform. Mathematical Surveys and Monographs, vol. 125 (American Mathematical Society, Providence, 2006)

    Google Scholar 

  12. D.N. Clark, One dimensional perturbations of restricted shifts. J. Anal. Math. 25, 169–191 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. de Branges, in Hilbert Spaces of Entire Functions (Prentice-Hall, Inc., Englewood Cliffs, 1968)

    MATH  Google Scholar 

  14. L. de Branges, J. Rovnyak, Canonical models in quantum scattering theory, in Perturbation Theory and its Applications in Quantum Mechanics. Proceeding of Advance Seminar Mathematics Research Center, U.S. Army, Theoretical Chemistry Institute at the University of Wisconsin, Madison, 1965 (Wiley, New York, 1966), pp. 295–392

    Google Scholar 

  15. R. Del Rio, S. Fuentes, A. Poltoratskii, Coexistence of spectra in rank-one perturbation problems. Bol. Soc. Mat. Mexicana (3) 8 (1), 49–61 (2002)

    Google Scholar 

  16. R. Del Rio, S. Fuentes, A. Poltoratskii, Families of spectral measures with mixed types, Operator methods in ordinary and partial differential equations (Stockholm, 2000). Oper. Theory Adv. Appl. 132, 131–140 (2002). Birkhäuser Basel

    Google Scholar 

  17. R. Del Rio, N. Makarov, B. Simon, Operators with singular continuous spectrum. II. Rank one operators. Commun. Math. Phys. 165 (1), 59–67 (1994)

    MATH  Google Scholar 

  18. R.G. Douglas, C. Liaw, A geometric approach to finite rank unitary perturbations. Indiana Univ. Math. J. 62 (1), 333–354 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Fröhlich, T. Spencer, Absence of diffusion in the tight binding model for large disorder of low energy. Commun. Math. Phys. 88, 151–184 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Germinet, A. Klein, J.H. Schenker, Dynamical delocalization in random Landau Hamiltonians. Ann. Math. (2) 166 (1), 215–244 (2007)

    Google Scholar 

  21. F. Ghribi, P.D. Hislop, F. Klopp, Localization for Schrödinger operators with random vector potentials. Contemporary Mathematics, 447, 123–138 (2007)

    Article  MATH  Google Scholar 

  22. A.Ya. Gordon, Instability of dense point spectrum under finite rank perturbations. Commun. Math. Phys. 187 (3), 583–595 (1997)

    Google Scholar 

  23. E. Hamza, A. Joye, G. Stolz, Localization for random unitary operators. Lett. Math. Phys. 75, 255–272 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Hamza, A. Joye, G. Stolz, Dynamical localization for unitary Anderson models. Math. Phys. Anal. Geom. 12, 381–444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Joye, Dynamical localization for d-dimensional random quantum walks. Quantum Inf. Process 11 (5), 1251–1269 (2012). doi:10.1007/s11128-012-0406-7

    Article  MathSciNet  MATH  Google Scholar 

  26. M.T. Jury, Completely positive maps induced by composition operators (2009, preprint) http://people.clas.ufl.edu/mjury/files/cpcomp.pdf

  27. W. King, R.C. Kirby, C. Liaw, Delocalization for 3-D discrete random Schroedinger operator at weak disorder. J. Phys. A: Math. Theor. 47, 305202 (2014). doi:10.1088/1751-8113/ 47/30/305202

    Article  MATH  Google Scholar 

  28. W. Kirsch, An invitation to Random Schrödinger operators. arXiv:0709.3707

    Google Scholar 

  29. P. Kurasov, Singular and supersingular perturbations: Hilbert space methods, in Spectral Theory of Schrödinger Operators (Universidad Nacional AutÓnoma de México, México, 2004)

    MATH  Google Scholar 

  30. C. Liaw, Approach to the extended states conjecture. J. Stat. Phys. 153 (6), 1022–1038 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Liaw, S. Treil, Clark model in general situation. Journal d’Analyse Mathématiques 130, 287–328 (2016). doi:10.1007/s11854-016-0038-4

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Liaw, S. Treil, Rank one perturbations and singular integral operators. J. Funct. Anal. 257 (6), 1947–1975 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Liaw, S. Treil, Regularizations of general singular integral operators. Rev. Mat. Iberoam. 29 (1), 53–74 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Nikolski, S. Treil, Linear resolvent growth of rank one perturbation of a unitary operator does not imply its similarity to a normal operator. J. Anal. Math. 87, 415–431 (2002). Dedicated to the memory of Thomas H. Wolff

    Google Scholar 

  35. N. Nikolski, V. Vasyunin, in Elements of Spectral Theory in Terms of the Free Function Model. I. Basic Constructions. Holomorphic spaces (Berkeley, 1995), Mathematical Sciences Research Institute Publication, vol. 33 (Cambridge University Press, Cambridge, 1998), pp. 211–302

    Google Scholar 

  36. N. Nikolskiĭ, V. Vasyunin, The Gohberg anniversary collection, A Unified Approach to Function Models, and the Transcription Problem, vol. II (Calgary, 1988). Operator Theory: Advances and Applications, vol. 41 (Birkhäuser, Basel, 1989), pp. 405–434

    Google Scholar 

  37. A. Poltoratskiĭ, D. Sarason, Aleksandrov-Clark measures, in Recent Advances in Operator-Related Function Theory. Contemporary Mathematics, vol. 393 (American Mathematical Society, Providence, 2006), pp. 1–14

    Google Scholar 

  38. A.G. Poltoratskiĭ, Boundary behavior of pseudocontinuable functions. Algebra i Analiz 5 (2), 189–210 (1993), engl. translation in St. Petersburg Math. J. 5(2),389–406 (1994)

    Google Scholar 

  39. D. Sarason, in Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 10 (Wiley, New York, 1994), A Wiley-Interscience Publication

    Google Scholar 

  40. B. Simon, Spectral analysis of rank one perturbations and applications, in Mathematical Quantum Theory. II. Schrödinger Operators, (Vancouver, 1993), in CRM Proceedings & Lecture Notes, vol. 8 (American Mathematical Society, Providence, 1995), pp. 109–149

    Google Scholar 

  41. B. Simon, T. Wolff, Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Commun. Pure Appl. Math. 39 (1), 75–90 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Stoiciu, in Poisson Statistics for Eigenvalues: From Random Schrdinger Operators to Random CMV Matrices. CRM Proceedings & Lecture Notes, vol. 42 (American Mathematical Society, Providence, 2007), pp. 465–475

    Google Scholar 

  43. B. Sz.-Nagy, C. Foiaş, H. Bercovici, L. Kérchy, Harmonic analysis of operators on Hilbert space, Universitext, 2nd ed., (Springer, New York, 2010). Original edition: B. Sz.-Nagy, C. Foiaş, Analyse harmonique des opérateurs de l’espace de Hilbert (Masson et Cie, Paris, 1967). Translated from the French and revised, North-Holland Publishing Co., Amsterdam, 1970.

    Google Scholar 

  44. C. Sundberg, Private communication and presentation at the conference “Waves and Spectra” in January 2011

    Google Scholar 

  45. H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann. 68 (2), 220–269 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Bellissard, P. Hislop, A. Klein, G. Stolz, Random Schrödinger operators: Universal Localization, Correlations, and Interactions, Conference report (for the conference held in April 2009 at the Banff International Research Station)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constanze Liaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s) and the Association for Women in Mathematics

About this paper

Cite this paper

Liaw, C., Treil, S. (2017). Singular Integrals, Rank One Perturbations and Clark Model in General Situation. In: Pereyra, M., Marcantognini, S., Stokolos, A., Urbina, W. (eds) Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2). Association for Women in Mathematics Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-51593-9_4

Download citation

Publish with us

Policies and ethics