Skip to main content

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 5))

Abstract

Given a pair of weights w, σ, the two weight inequality for the Hilbert transform is of the form \(\Vert H(\sigma f)\Vert _{L^{2}(w)}\lesssim \Vert f\Vert _{L^{2}(\sigma )}\). Recent work of Lacey-Sawyer-Shen-Uriarte-Tuero and Lacey have established a conjecture of Nazarov-Treil-Volberg, giving a real-variable characterization of which pairs of weights this inequality holds, provided the pair of weights do not share a common point mass. In this paper, the characterization is proved, collecting details from across several papers; counterexamples are detailed; and areas of application are indicated.

In memory of my father, H. Elton Lacey

Research supported in part by grant NSF-DMS 0968499, a grant from the Simons Foundation (#229596 to Michael Lacey), and the Australian Research Council through grant ARC-DP120100399. The author benefited from two research programs, first ‘Operator Related Function Theory and Time-Frequency Analysis’ at the Centre for Advanced Study at the Norwegian Academy of Science and Letters in Oslo during 2012–2013, and second ‘Interactions between Analysis and Geometry’ program at IPAM, UCLA, 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In particular, they noted that the simple A 2 condition was not sufficient for the boundedness of the Hilbert transform, and conjectured that half-Poisson A 2 conditions would be sufficient, an indication of the powerful sway held by the Muckenhoupt A 2 condition in the early years of the weighted theory.

  2. 2.

    Alternatively, under the assumption of w being doubling, check that the energy satisfies \(E(w,I)\gtrsim 1\), with the implied constant depending upon the doubling constant. Thus, the necessary energy inequality implies the pivotal condition.

References

  1. A.B. Aleksandrov, Isometric embeddings of co-invariant subspaces of the shift operator. Zap. Nauchn. Sem. S. Peterburg Otdel. Mat. Inst. Steklov. (POMI) 232 (1996), no. Issled. po Linein. Oper. i Teor. Funktsii. 24, 5–15, 213 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 92 (1), 3543–3549 (1998)

    Google Scholar 

  2. A. Aleman, S. Pott, M.C. Reguera, Sarason conjecture on the Bergman space, Available at http://www.arxiv.org/abs/1304.1750

  3. Y. Belov, T.Y. Mengestie, K. Seip, Unitary discrete Hilbert transforms. J. Anal. Math. 112, 383–393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Belov, T.Y. Mengestie, K. Seip, Discrete Hilbert transforms on sparse sequences. Proc. Lond. Math. Soc. (3) 103 (1), 73–105 (2011)

    Google Scholar 

  5. L. Carleson, On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Cascante, J.M. Ortega, I.E. Verbitsky, On L p-L q trace inequalities. J. Lond. Math. Soc. (2) 74 (2), 497–511 (2006)

    Google Scholar 

  7. D. Cruz-Uribe, The invertibility of the product of unbounded Toeplitz operators. Integr. Equ. Oper. Theory. 20 (2), 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Cruz-Uribe, J. Martell, C. Pérez, A note on the off-diagonal Muckenhoupt-Wheeden conjecture, 2012, Available at http://www.arxiv.org/abs/1203.5906

  9. L. de Branges (ed.), Hilbert Spaces of Entire Functions (Prentice-Hall Inc., Englewood Cliffs, 1968)

    MATH  Google Scholar 

  10. C. Fefferman, Pointwise convergence of Fourier series. Ann. Math. (2) 98, 551–571 (1973)

    Google Scholar 

  11. R. Hunt, B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc. 176, 227–251 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. T.P. Hytönen, On Petermichl’s dyadic shift and the Hilbert transform. C. R. Math. Acad. Sci. Paris 346 (21–22), 1133–1136 (2008). (English, with English and French summaries)

    Google Scholar 

  13. T.P. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators. Ann. Math. (2) 175 (3), 1473–1506 (2012)

    Google Scholar 

  14. T.P. Hytönen, The A 2 theorem: remarks and complements, in Harmonic Analysis and Partial Differential Equations. Contemporary Mathematics, vol. 612 (American Mathematical Society, Providence, 2014), pp 91–106. doi:10.1090/conm/612/12226. MR3204859

  15. T.P. Hytönen, The two weight inequality for the Hilbert transform with general measures, 2013, Available at http://www.arxiv.org/abs/1312.0843

  16. M.T. Lacey, An elementary proof of the A 2 Bound. Isr. J. Math. 217, 181 (2017). doi:10.1007/s11856-017-1442-x

    Article  MathSciNet  MATH  Google Scholar 

  17. M.T. Lacey, Two-weight inequality for the Hilbert transform: a real variable characterization, II. Duke Math. J. 163 (15), 2821–2840 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. M.T. Lacey, S. Petermichl, M.C. Reguera, Sharp A 2 inequality for Haar shift operators. Math. Ann. 348 (1), 127–141 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. M.T. Lacey, E.T. Sawyer, I. Uriarte-Tuero, A characterization of two weight norm inequalities for maximal singular integrals with one doubling measure. Anal. PDE 5 (1), 1–60 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. M.T. Lacey, E.T. Sawyer, I. Uriarte-Tuero, A two weight inequality for the Hilbert transform assuming an energy hypothesis. J Funct. Anal. 263, 305–363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. M.T. Lacey, E.T. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, The two weight inequality for the Hilbert transform, coronas, and energy conditions, (2011), Available at http://www.arXiv.org/abs/118.2319

  22. M.T. Lacey, E.T. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, Two weight inequality for the Hilbert transform: a real variable characterization. https://arxiv.org/abs/1201.4319v6

  23. M.T. Lacey, E.T. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, Two-weight inequality for the Hilbert transform: a real variable characterization, I. Duke Math. J. 163 (15), 2795–2820 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. M.T. Lacey, E.T. Sawyer, I. Uriarte-Tuero, C.-Y. Shen, B. Wick, Two weight inequalities for the Cauchy transform from R to C+, 2013, Available at http://arxiv.org/abs/1310.4820

    Google Scholar 

  25. M.T. Lacey, C. Thiele, A proof of boundedness of the Carleson operator. Math. Res. Lett. 7, 361–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. M.T. Lacey, B. Wick, Two weight inequalities for Riesz transforms: uniformly full dimension weights, 2013, Available at http://arxiv.org/abs/1312.6163

    Google Scholar 

  27. J. Lai, S. Treil, Two weight L p estimates for paraproducts in non-homogeneous settings, Available at http://arxiv.org/abs/1507.05570

  28. A.K. Lerner, A pointwise estimate for the local sharp maximal function with applications to singular integrals. Bull. Lond. Math. Soc. 42 (5), 843–856 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. A.K. Lerner, A simple proof of the A 2 conjecture. Int. Math. Res. Not. IMRN 14, 3159–3170 (2013). MR3085756

    MathSciNet  Google Scholar 

  30. C. Liaw, S. Treil, Rank one perturbations and singular integral operators. J. Funct. Anal. 257 (6), 1947–1975 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Liaw, S. Treil, Regularizations of general singular integral operators. Rev. Mat. Iberoam. 29 (1), 53–74 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Muckenhoupt, Hardy’s inequality with weights. Studia Math. 44, 31–38 (1972). Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I

    Google Scholar 

  33. B. Muckenhoupt, R.L. Wheeden, Two weight function norm inequalities for the Hardy-Littlewood maximal function and the Hilbert transform. Studia Math. 55 (3), 279–294 (1976)

    MathSciNet  MATH  Google Scholar 

  34. F. Nazarov, A counterexample to Sarason’s conjecture. Preprint, MSU, 1997, Available at http://www.mathmsuedu/~fedja/prepr.html

  35. F. Nazarov, S. Treil, A. Volberg, Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Notices 15, 703–726 (1997)

    Article  MATH  Google Scholar 

  36. F. Nazarov, S. Treil, A. Volberg, Accretive system Tb-theorems on nonhomogeneous spaces. Duke Math. J. 113 (2), 259–312 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Nazarov, S. Treil, A. Volberg, The Tb-theorem on non-homogeneous spaces. Acta Math. 190 (2), 151–239 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Nazarov, S. Treil, A. Volberg, Two weight estimate for the Hilbert transform and Corona decomposition for non-doubling measures, 2004, Available at http://arxiv.org/abs/1003.1596

  39. F. Nazarov, S. Treil, A. Volberg, Two weight inequalities for individual Haar multipliers and other well localized operators. Math. Res. Lett. 15 (3), 583–597 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. F. Nazarov, A. Volberg, The Bellman function, the two-weight Hilbert transform, and embeddings of the model spaces K θ. J. Anal. Math. 87, 385–414 (2002). Dedicated to the memory of Thomas H. Wolff

    Google Scholar 

  41. N. K. Nikol’skiĭ, in Treatise on the Shift Operator. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273 (Springer, Berlin, 1986). Spectral function theory; With an appendix by S.V. Hruščev [S.V. Khrushchëv], V.V. Peller; Translated from the Russian by Jaak Peetre

    Google Scholar 

  42. N. Nikolski, S. Treil, Linear resolvent growth of rank one perturbation of a unitary operator does not imply its similarity to a normal operator. J. Anal. Math. 87, 415–431 (2002). Dedicated to the memory of Thomas H. Wolff

    Google Scholar 

  43. S. Petermichl, Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol. C. R. Acad. Sci. Paris Sér. I Math. 330 (6), 455–460 (2000). (English, with English and French summaries)

    Google Scholar 

  44. S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A p characteristic. Am. J. Math. 129 (5), 1355–1375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. C. Pérez, S. Treil, A. Volberg, OnA 2 conjecture and Corona decomposition of weights, 2010, Available at http://arxiv.org/abs/1006.2630

    Google Scholar 

  46. A. Poltoratski, D. Sarason, Aleksandrov-Clark measures, in Recent Advances in Operator-Related Function Theory. Contemporary Mathematics, vol. 393 (American Mathematical Society, Providence, 2006), pp. 1–14

    Google Scholar 

  47. M.C. Reguera, On Muckenhoupt-Wheeden conjecture. Adv. Math. 227 (4), 1436–1450 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. M.C. Reguera, J. Scurry, On joint estimates for maximal functions and singular integrals on weighted spaces. Proc. Am. Math. Soc. 141 (5), 1705–1717 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. M.C. Reguera, C. Thiele, The Hilbert transform does not map L 1(Mw) to L 1(w). Math. Res. Lett. 19 (1), 1–7 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. D. Sarason, Exposed Points in H 1. I. The Gohberg anniversary collection, vol. II (Calgary, AB, 1988), Operator Theory Advances and Applications, vol. 41 (Birkhäuser, Basel, 1989), pp. 485–496

    Google Scholar 

  51. D. Sarason, in Products of Toeplitz Operators, Linear and Complex Analysis. Problem Book 3. Part I, ed. by V.P. Havin, N.K. Nikolski. Lecture Notes in Mathematics, vol. 1573 (Springer, Berlin, 1994), pp. 318–319

    Google Scholar 

  52. E.T. Sawyer, A characterization of a two-weight norm inequality for maximal operators. Studia Math. 75 (1), 1–11 (1982)

    MathSciNet  MATH  Google Scholar 

  53. E.T. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals. Trans. Am. Math. Soc. 308 (2), 533–545 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  54. E.T. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, A note on failure of energy reversal for classical fractional singular integrals. Int. Math. Res. Not. IMRN 2015 (19), 9888–9920

    Article  MathSciNet  MATH  Google Scholar 

  55. H. Tanaka, A characterization of two-weight trace inequalities for positive dyadic operators in the upper triangle case. Potential Anal. 41 (2), 487–499 (2014). doi:10.1007/s11118-013-9379-0. MR3232035

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Volberg, Calderón-Zygmund Capacities and Operators on Nonhomogeneous Spaces. CBMS Regional Conference Series in Mathematics, vol. 100 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2003)

    Google Scholar 

  57. E. Vuorinen, L p(μ) → L q(ν) characterization for well localized operators. J. Fourier Anal. Appl. 22 (5), 1059–1075 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. E. Vuorinen, Two weight L p-inequalities for dyadic shifts and the dyadic square function. Studia Math. 237 (1), 25–56 (2017). 42B20 (42B25)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Lacey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s) and the Association for Women in Mathematics

About this paper

Cite this paper

Lacey, M.T. (2017). The Two Weight Inequality for the Hilbert Transform: A Primer. In: Pereyra, M., Marcantognini, S., Stokolos, A., Urbina, W. (eds) Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2). Association for Women in Mathematics Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-51593-9_3

Download citation

Publish with us

Policies and ethics