Skip to main content

What Problems Arise When Enzymatic Synthesis of Structured Di- and Triglycerides Is Performed?

  • Chapter
  • First Online:
Enzymatic Synthesis of Structured Triglycerides

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

This chapter describes the batch and continuous reactors used in structured diglyceride and triglyceride (ST) synthesis, and analyzes and discusses the several problems found in the literature and in the practical settings for the production of STs, especially when scaling to industry is considered. The problems of adsorbent use, the reaction media composition, the relative adsorption of substrates and products, the secondary contamination due to protein leaching in some immobilized systems, the perturbations introduced by the adsorbents, the main problems of enzyme inhibition or inactivation due to glycerol/fatty acids and several others are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farfán M, Álvarez A, Gárate A, Bouchon P (2015) Comparison of chemical and enzymatic interesterification of fully hydrogenated soybean oil and walnut oil to produce a fat base with adequate nutritional and physical characteristics. Food Technol Biotechnol 53:361–366

    Article  Google Scholar 

  2. Dijkstra A (2015) Interesterification, chemical or enzymatic catalysis. Lipid Technol 27:134–136

    Article  CAS  Google Scholar 

  3. Holm H, Cowan D (2008) The evolution of enzymatic interesterification in the oils and fats industry. Eur J Lipid Sci Technol 110:679–691

    Article  CAS  Google Scholar 

  4. Adhikari P, Shin J, Lee J, Hu J, Zhu X, Akoh C, Lee K (2010) Production of trans-free margarine stock by enzymatic interesterification of rice bran oil, palm stearin and coconut oil. J Sci Food Agric 90:703–711

    CAS  Google Scholar 

  5. Cowan D, Oxenbøll K, Holm H (2008) Enzymatic bioprocessing of oils and fats. Inform 4:210–212

    Google Scholar 

  6. Jegannathan K, Nielsen P (2013) Environmental assessment of enzyme use in industrial production—a literature review. J Clean Prod 42:228–240

    Article  CAS  Google Scholar 

  7. Dijkstra A (2007) Modification processes and food uses. In: Gunstone F, Harwood J, Dijkstra A (eds) The lipid handbook, 3rd edn. CRC, Boca Raton, pp 263–354

    Google Scholar 

  8. Marangoni A (2002) Lipases: structure, function, and properties. In: Kuo T, Gardner H (eds) Lipid biotechnology. Marcel Dekker, New York, pp 360–389

    Google Scholar 

  9. Willis W, Marangoni A (2008) Enzymatic interesterification. In: Akoh C, Min D (eds) Food lipids: chemistry, nutrition, and biotechnology, 3rd edn. CRC, Boca Raton, pp 807–839

    Google Scholar 

  10. Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42:6236–6249

    Article  CAS  Google Scholar 

  11. Hartmann M, Jung D (2010) Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. J Mater Chem 20:844–857

    Article  CAS  Google Scholar 

  12. Schafer De Martini Soares F, Osorio N, da Silva R, Gioielli L, Ferreira-Dias S (2013) Batch and continuous lipase-catalyzed interesterification of blends containing olive oil for trans-free margarines. Eur J Lipid Sci Technol 115:413–428

    Article  Google Scholar 

  13. Cowan D (2009) Does the lipase source or oil composition influence enzymatic interesterification? Inform 20:622–623

    Google Scholar 

  14. Malcata F, Reyes H, Garcia H, Hill G Jr, Amundson C (1992) Kinetics and mechanisms of reactions catalysed by immobilized lipases. Enzyme Microb Technol 14:426–446

    Article  CAS  Google Scholar 

  15. Yamane T (1987) Enzyme technology for the lipids industry: an engineering overview. J Am Oil Chem Soc 64:1657–1662

    Article  CAS  Google Scholar 

  16. Camacho Páez B, Robles Medina A, Camacho Rubio F, González Morenoa P, Molina Grima E (2003) Modeling the effect of free water on enzyme activity in immobilized lipase-catalyzed reactions in organic solvents. Enzyme Microb Technol 33:845–853

    Article  Google Scholar 

  17. Gandhi N, Patil N, Sawant S, Joshi J, Wangikar P, Mukesh D (2001) Lipase catalyzed esterification. Catal Rev 42:439–480

    Article  Google Scholar 

  18. Miller C, Austin H, Porsorske L, Gonziez J (1988) Characteristics of an immobilized lipase for the commercial synthesis of esters. J Am Oil Chem Soc 65:927–935

    Article  CAS  Google Scholar 

  19. Sanchez D, Tonetto G, Ferreira M (2016) An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435. J Biotechnol 220:92–99

    Article  CAS  Google Scholar 

  20. Sahin N, Akoh CC, Karaali A (2005) Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes. J Agric Food Chem 53:5779–5783

    Article  CAS  Google Scholar 

  21. Hasnisa H, Jumat S (2012) Enzymatic acidolysis of palm olein with PUFA to improve linoleic and α-linolenic acids ratio. J Trop Agric Food Sci 40:71–79

    Google Scholar 

  22. Choi N, Kim Y, Lee J, Kwak J, Lee J, Kim I (2016) Synthesis of fatty acid ethyl ester from acid oil in a continuous reactor via an enzymatic transesterification. J Am Oil Chem Soc 93:311–318

    Article  CAS  Google Scholar 

  23. Foggler H (2006) Elements of chemical reaction engineering, 5th edn. Prentice Hall, New Jersey

    Google Scholar 

  24. Illanes A, Altamirano C (2008) Enzyme reactors. In: Illanes A (ed) Enzyme biocatalysis: principles and applications. Springer, Netherlands, pp 205–251

    Chapter  Google Scholar 

  25. Poppe J, Fernandez-Lafuente R, Rodrigues R, Ayub M (2015) Enzymatic reactors for biodiesel synthesis: present status and future prospects. Biotechnol Adv 33:511–525

    Article  CAS  Google Scholar 

  26. Cheng C, Abdulla R, Sridhar R, Ravindra P (2011) Determination of external mass transfer model for hydrolysis of jatropha oil using immobilized lipase in recirculated packed-bed reactor. Adv Chem Eng Sci 1:289–298

    Article  CAS  Google Scholar 

  27. Paula A, Nunes G, de Castro H, Santos J (2015) Synthesis of structured lipids by enzymatic interesterification of milkfat and soybean oil in a basket-type stirred tank reactor. Ind Eng Chem Res 54:1731–1737

    Article  CAS  Google Scholar 

  28. Ilyasoglu H, Gultekin-Ozguven M, Ozcelik B (2011) Production of human milk fat substitute with medium-chain fatty acids by lipase-catalyzed acidolysis: optimization by response surface methodology. LWT Food Sci Technol 44:999–1004

    Article  CAS  Google Scholar 

  29. Saw M, Siew W (2014) The effectiveness of immobilized lipase thermomyces lanuginosa in catalyzing interesterification of palm olein in batch reaction. J Oleo Sci 63:295–302

    Article  CAS  Google Scholar 

  30. Watanabe T, Shimizu M, Sugiura M, Sato M, Kohori J, Yamada N, Nakanishi K (2003) Optimization of reaction conditions for production of DAG using immobilized 1,3-regiospecific lipase Lipozyme RM IM. J Am Oil Chem Soc 80:1201–1207

    Article  CAS  Google Scholar 

  31. Yamada N, Matsuo N, Watanabe T, Yanagi T (2005) Enzymatic production of diacylglycerol and its beneficial physiological functions. In: Hou C (ed) Handbook of industrial biocatalysis. CRC, Boca Raton pp 1,11-17

    Google Scholar 

  32. Camino Feltes M, Villeneuve P, Baréa B, Barouh N, de Oliveira J, de Oliveira D, Ninow J (2012) Enzymatic production of monoacylglycerols (MAG) and diacylglycerols (DAG) from fish oil in a solvent-free system. J Am Oil Chem Soc 89:1057–1065

    Article  Google Scholar 

  33. Singh A, Mukhopadhyay M (2012) Olive oil glycerolysis with the immobilized lipase Candida Antarctica in a solvent free system. Grasas Aceites 63:202–208

    Article  CAS  Google Scholar 

  34. Li S (1978) Performance characteristics of a CSTR containing immobilised enzyme particles. J Appl Chem Biotechnol 28:677–685

    Google Scholar 

  35. Liu Q, Jia C, Kim J, Jiang P, Zhang P, Feng B, Xu S (2008) Lipase-catalyzed selective synthesis of monolauroyl maltose using continuous stirred tank reactor. Biotechnol Lett 30:497–502

    Article  CAS  Google Scholar 

  36. Cowan D (2010) Lipases for the production of food components. In: Whitehurst R, van Oort M (eds) Enzymes in food technology, 2nd edn. Wiley-Blackwell, New Jersey, pp 332–359

    Google Scholar 

  37. Fernandes P (2010) Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res 19. doi:10.4061/2010/862537

  38. Gustafsson H, Johansson E, Barrabino A, Odén M, Holmberg K (2012) Immobilization of lipase from Mucor miehei and Rhizopus oryzae into mesoporous silica—the effect of varied particle size and morphology. Colloids Surf B 100:22–30

    Article  CAS  Google Scholar 

  39. Cowan D (2011) Enzymatic interesterification. In: Dijkstra A (ed) Edible oil processing. AOCS Lipid Library, Spain http://lipidlibrary.aocs.org/content.cfm?ItemNumber=40329

    Google Scholar 

  40. Paula A, Nunes G, Santos J, de Castro H (2011) Interesterification of milkfat with soybean oil catalysed by Rhizopus oryzae lipase immobilised on SiO2-PVA on packed bed reactor. Int J Food Sci Technol 46:2124–2130

    Article  CAS  Google Scholar 

  41. da Silva R, Schaffer De Martini Soares F, Hazzan M, Capacla I, Almeida Goncalves M, Gioielli L (2012) Continuous enzymatic interesterification of lard and soybean oil blend: effects of different flow rates on physical properties and acyl migration. J Mol Catal B 76:23–28

    Article  Google Scholar 

  42. Simões A, Ramos L, Freitas L, Santos J, Zanin G, de Castro H (2015) Performance of an enzymatic packed bed reactor running on babassu oil to yield fatty ethyl esters (FAEE) in a solvent-free system. Biofuel Res J 6:242–247

    Article  Google Scholar 

  43. Ray S (2012) Studies on fluidized bed column reactor for the substrate conversion using immobilised extracellular alkaline lipase of isolated strain of Serratia sp (C4). J Microbiol Biotechnol Res 2:538–544

    CAS  Google Scholar 

  44. Paula A, Nunes G, Osório N, Santos J, Castro H, Ferreira-Dias S (2014) Continuous enzymatic interesterification of milkfat with soybean oil produces a highly spreadable product rich in polyunsaturated fatty acids. Eur J Lipid Sci Technol 117:608–619

    Article  Google Scholar 

  45. Saponjić S, Knežević-Jugović Z, Bezbradica D, Zuza M, Saied O, Bosković-Vragolović N, Mijin D (2010) Use of Candida rugosa lipase immobilized on sepabeads for the amyl caprylate synthesis: batch and fluidized bed reactor study. Electron J Biotechnol. doi:10.2225/vol13-issue6-fulltext-8

    Google Scholar 

  46. Matte CR, Bordinhão C, Poppe JK, Rodrigues RC, Hertz LF, Ayub MAZ (2016) Synthesis of butyl butyrate in batch and continuous enzymaticreactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. J Mol Catal B 127:67–75

    Article  CAS  Google Scholar 

  47. Koros W, Ma Y, Shimidzu T (1996) Terminology for membranes and membrane processes. J Membr Sci 120(1996):149–159

    CAS  Google Scholar 

  48. Gupta S, Bhattacharya A, Murthy C (2013) Tune to immobilize lipases on polymer membranes: techniques, factors and prospects. Biocatal Agric Biotechnol 2:171–190

    Google Scholar 

  49. Jochems P, Satyawali Y, Diels L, Dejonghe W (2011) Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem 13:1609–1623

    Article  CAS  Google Scholar 

  50. Gupta S (2016) Comparative study on hydrolysis of oils by lipase immobilized biocatalytic PS membranes using biphasic enzyme membrane reactor. J Environ Chem Eng 4(2016):1797–1809

    Article  CAS  Google Scholar 

  51. Saberi A, Lai O, Miskandar M (2010) Melting and solidification properties of palm-based diacylglycerol, palm kernel olein, and sunflower oil in the preparation of palm-based diacylglycerol-enriched soft tub margarine. Food Bioprocess Technol 5:1674–1685

    Article  Google Scholar 

  52. Sugiura M, Kohori H, Yamada N (2002) Preparation process of diglycerides. US Patent No. 6361980B2

    Google Scholar 

  53. Lai O, Lo S (2011) Diacylglycerol oils: nutritional aspects and applications in foods. In: Talbot G (ed) Reducing saturated fats in foods. Woodhead, Cambridge, pp 158–178

    Chapter  Google Scholar 

  54. Liu M, Fu J, Teng Y, Zhang Z, Zhang N, Wang Y (2016) Fast production of diacylglycerol in a solvent free system via lipase catalyzed esterification using a bubble column reactor. J Am Oil Chem Soc 93:637–648

    Article  CAS  Google Scholar 

  55. Kumar A, Dhar K, Kanwar S, Arora P (2016) Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 18:2. doi:10.1186/s12575-016-0033-2

    Article  Google Scholar 

  56. Kapoor M, Gupta M (2012) Obtaining monoglycerides by esterification of glycerol with palmitic acid using some high activity preparations of Candida antarctica lipase B. Process Biochem 47:503–508

    Article  CAS  Google Scholar 

  57. Stojanović M, Velićković D, Dimitrijević A, Milosavić N, Knežević-Jugović Z, Bezbradica D (2013) Lipase-catalyzed synthesis of ascorbyl oleate in acetone: optimization of reaction conditions and lipase reusability. J Oleo Sci 62:591–603

    Article  Google Scholar 

  58. Dahlan I, Kamaruddin A, Najafpour G (2005) Cytronellyl butyrate synthesis innon-conventional media using packed-bed immobilized Candida rugosa lipasereactor. Int J Eng 18:153–164

    CAS  Google Scholar 

  59. Guo Z, Sun Y (2007) Solvent-free production of 1,3-diglyceride of CLA: strategy consideration and protocol design. Food Chem 100:1076–1084

    Article  CAS  Google Scholar 

  60. Ye R, Hayes D (2011) Optimization of the solvent-free lipase-catalyzed synthesis of fructose-oleic acid ester through programming of water removal. J Am Oil Chem Soc 88:1351–1359

    Article  CAS  Google Scholar 

  61. Won K, Lee S (2001) Effects of water and silica gel on enzyme agglomeration in organic solvents. Biotechnol Bioprocess Eng 6:150–155

    Article  CAS  Google Scholar 

  62. Sánchez A, Tonetto G, Ferreira M (2014) Enzymatic synthesis of 1,3-dicaproyglycerol by esterification of glycerol with capric acid in an organic solvent system. J Mol Catal B 100:7–18

    Article  Google Scholar 

  63. Yang TK, Fruekilde M-B, Xu X (2005) Suppression of acyl migration in enzymatic production of structured lipids through temperature programming. Food Chem 92:101–107

    Article  CAS  Google Scholar 

  64. Li W, Du W, Li Q, Sun T, Liu D (2010) Study on acyl migration kinetics of partial glycerides: dependence on temperature and water activity. J Mol Catal B 63:17–22

    Article  CAS  Google Scholar 

  65. Laszlo JA, Compton DL, Vermillion KE (2008) Acyl migration kinetics of vegetable oil 1,2-diacylglycerols. J Am Oil Chem Soc 85:307–312

    Article  CAS  Google Scholar 

  66. Compton DL, Vermillion KE, Laszlo JA (2007) Acyl migration kinetics of 2-monoacylglycerols from soybean oil via 1 H NMR. J Am Oil Chem Soc 84:343–348

    Article  CAS  Google Scholar 

  67. Li W, Du W, Li Q, Li R-W, Liu D (2010) Dependence on the properties of organic solvent: study on acyl migration kinetics of partial glycerides. Bioresour Technol 101:5737–5742

    Article  CAS  Google Scholar 

  68. Köhler J, Wünsch BT (2007) The allosteric modulation of lipases and its possible biological relevance. Theor Biol Med Model 4:34 20 p

    Article  Google Scholar 

  69. Daniel Sánchez (2016) PhD thesis, PLAPIQUI-UNS-CONICET, R. Argentina

    Google Scholar 

  70. Cao X, Mangas-Sánchez J, Feng F, Adlercreutz P (2016) Acyl migration in enzymatic interesterification of triacylglycerols: effects of lipases from Thermomyces lanuginosus and Rhizopus oryzae, support material, and water activity. Eur J Lipid Sci Technol 118:1579–1587

    Article  CAS  Google Scholar 

  71. Li W, Li R, Li Q, Du W, Liu D (2010) Acyl migration and kinetics study of 1(3)-positional specific lipase of Rhizopus oryzae-catalyzed methanolysis of triglyceride for biodiesel production. Process Biochem 45:1888–1893

    Article  CAS  Google Scholar 

  72. Lopes TIB, Ribeiro MDMM, Ming CC, Grimaldi R, Gonçalves LAG, Marsaioli A (2016) Comparison of the regiospecific distribution from triacylglycerols after chemical and enzymatic interesterification of high oleic sunflower oil and fully hydrogenated high oleic sunflower oil blend by carbon-13 nuclear magnetic resonance. Food Chem 212:641–647

    Article  CAS  Google Scholar 

  73. Hernández K, Garcia-Verdugo E, Porcar R, Fernández-Lafuente R (2011) Hydrolysis of triacetin catalyzed by immobilized lipases: effect of the immobilization protocol and experimental conditions on diacetin yield. Enzyme Microb Technol 48:510–517

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Ferreira, M.L., Tonetto, G.M. (2017). What Problems Arise When Enzymatic Synthesis of Structured Di- and Triglycerides Is Performed?. In: Enzymatic Synthesis of Structured Triglycerides. SpringerBriefs in Molecular Science. Springer, Cham. https://doi.org/10.1007/978-3-319-51574-8_3

Download citation

Publish with us

Policies and ethics