Versatile Interaction Control and Haptic Identification in Humans and Robots

Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 117)

Abstract

Traditional industrial robot controllers are typically dedicated to a specific task, while humans always interact with new objects yielding unknown interaction forces and instability. In this chapter, we examine the neuromechanics of such contact tasks. We develop a model of the necessary adaptation of force, mechanical impedance and planned trajectory for stable and efficient interaction with rigid or compliant surfaces of different structures. Simulations demonstrate that this model can be used as a novel adaptive robot controller yielding versatile control in representative interactive tasks such as cutting, drilling and haptic exploration, where the robot acquires a model of the geometry and structure of the surface along which it is moving.

References

  1. 1.
    N. Jarrassé, V. Sanguineti, E. Burdet, Slaves no longer: review on role assignment for human-robot joint motor action. Adapt. Behav. 22(1), 70–82 (2014)CrossRefGoogle Scholar
  2. 2.
    P. Dario, M. Bergamasco, A. Sabatini, Sensing body structures by an advanced robot system, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (1988), pp. 1758–1763Google Scholar
  3. 3.
    K. Pribadi, J.S. Bay, H. Hemami, Exploration and dynamic shape estimation by a robotic probe. IEEE Trans. Syst. Man Cybern. 19(4), 840–846 (1989)CrossRefGoogle Scholar
  4. 4.
    S. Sestili, A. Starita, Learning objects by tactile perception, in Proceedings of the IEEE International Engineering in Medicine and Biology Society (EMBC) (1989), pp. 896–897Google Scholar
  5. 5.
    S.A. Stansfield, Haptic perception with an articulated, sensate robot hand. Robotica 10(6), 497–508 (1992)Google Scholar
  6. 6.
    A.M. Okamura, M.R. Cutkosky, Haptic exploration of fine surface features, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (1999), pp. 2930–2936Google Scholar
  7. 7.
    A.M. Okamura, M.R. Cutkosky, Feature-guided exploration with a robotic finger, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2001), pp. 589–596Google Scholar
  8. 8.
    H.T. Tanaka, K. Kushihama, N. Ueda, S. Hirai, A vision-based haptic exploration, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2003), pp. 3441–3448Google Scholar
  9. 9.
    A. Bierbaum, M. Rambow, T. Asfour, R. Dillmann, A potential field approach to dexterous tactile exploration of unknown objects, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2008), pp. 360–366Google Scholar
  10. 10.
    F. Mazzini, D. Kettler, S. Dubowsky, J. Guerrero, Tactile robotic mapping of unknown surfaces: an application to oil well exploration, in IEEE International Workshop on Robotic and Sensors Environments (ROSE) (2009), pp. 80–88Google Scholar
  11. 11.
    D.R. Faria, R. Martins, J. Lobo, J. Dias, Probabilistic representation of 3D object shape by in-hand exploration, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2010), pp. 1560–1565Google Scholar
  12. 12.
    W.W. Mayol-Cuevas, J. Juarez-Guerrero, S. Munoz-Gutierrez, A first approach to tactile texture recognition. in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (1993), pp. 4246–4250Google Scholar
  13. 13.
    P.A. Schmidt, E. Mael, R.P. Wurtz, A sensor for dynamic tactile information with applications in human- robot interaction and object exploration. Robot. Auton. Syst. 54(12), 1005–1014 (2006)CrossRefGoogle Scholar
  14. 14.
    D. Kraft, A. Bierbaum, M. Kjaergaard, J. Ratkevicius, A. Kjaer-Nielsen, C. Ryberg, H. Petersen, T. Asfour, R. Dillmann, N. Kruger, Tactile object exploration using cursor navigation sensors, in Proceedings of the IEEE WorldHaptics (2009), pp. 296–301Google Scholar
  15. 15.
    N. Hogan, Impedance control: an approach to manipulation. J. Dyn. Syst. Meas. Control Trans. ASME 107(1), 1–24 (1985)Google Scholar
  16. 16.
    O. Khatib, A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)CrossRefGoogle Scholar
  17. 17.
    J.R. Lackner, P. Dizio, Rapid adaptation to coriolis-force perturbations of arm trajectory. J. Neurophysiol. 72(1), 299–313 (1994)Google Scholar
  18. 18.
    R. Shadmehr, F.A. Mussa-Ivaldi, Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 74(5), 3208–3224 (1994)Google Scholar
  19. 19.
    M.A. Conditt, F. Gandolfo, F.A. Mussa-Ivaldi, The motor system does not learn the dynamics of the arm by rote memorization of past experience. J. Neurophysiol. 78, 554–560 (1997)Google Scholar
  20. 20.
    T.E. Milner, C. Cloutier, Compensation for mechanically unstable loading in voluntary wrist movement. Exp. Brain Res. 94(3), 522–532 (1993)CrossRefGoogle Scholar
  21. 21.
    E. Burdet, R. Osu, D.W. Franklin, T.E. Milner, M. Kawato, The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–449 (2001)CrossRefGoogle Scholar
  22. 22.
    A. Kadiallah, G. Liaw, M. Kawato, D.W. Franklin, E. Burdet, Impedance control is selectively tuned to multiple directions of movement. J. Neurophysiol. 106(5), 2737–2748 (2011)CrossRefGoogle Scholar
  23. 23.
    D.W. Franklin, G. Liaw, T.E. Milner, R. Osu, E. Burdet, M. Kawato, Endpoint stiffness of the arm is directionally tuned to instability in the environment. J. Neurosci. 27(29), 7705–7716 (2007)CrossRefGoogle Scholar
  24. 24.
    D.W. Franklin, E. Burdet, K.P. Tee, R. Osu, C.M. Chew, T.E. Milner, M. Kawato, CNS learns stable, accurate, and efficient movements using a simple algorithm. J. Neurosci. 28(44), 11165–11173 (2008)CrossRefGoogle Scholar
  25. 25.
    K.P. Tee, D.W. Franklin, M. Kawato, T.E. Milner, E. Burdet, Concurrent adaptation of force and impedance in the redundant muscle system. Biol. Cybern. 102(1), 31–44 (2010)CrossRefMATHGoogle Scholar
  26. 26.
    C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schaeffer, E. Burdet, Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans. Robot. 27(5), 918–30 (2011)CrossRefGoogle Scholar
  27. 27.
    G. Ganesh, A. Albu-Schaeffer, M. Haruno, M. Kawato, E. Burdet, Biomimetic motor behavior for simultaneous adaptation of force, impedance and trajectory in interaction tasks, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2010), pp. 2705–2711Google Scholar
  28. 28.
    G. Ganesh, N. Jarrassé, S. Haddadin, A. Albu-Schaeffer, E. Burdet, A versatile biomimetic controller for contact tooling and haptic exploration, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2012), pp. 3329–3334Google Scholar
  29. 29.
    V.S. Chib, J.L. Patton, K.M. Lynch, F.A. Mussa-Ivaldi, Haptic identification of surfaces as fields of force. J. Neurophysiol. 95(2), 1068–1077 (2005)CrossRefGoogle Scholar
  30. 30.
    M. Casadio, A. Pressman, S. Mussa-Ivaldi, Learning to push and learning to move: the adaptive control of contact forces. Front. Comput. Neurosci. 9(118) (2015)Google Scholar
  31. 31.
    F.A. Mussa-Ivaldi, N. Hogan, E. Bizzi, Neural, mechanical, and geometric factors subserving arm posture in humans. J. Neurosci. 5(10), 2732–2743 (1985)Google Scholar
  32. 32.
    J. Won, N. Hogan, Stability properties of human reaching movements. Exp. Brain Res. 107(1), 125–126 (1995)CrossRefGoogle Scholar
  33. 33.
    D.W. Franklin, E. Burdet, R. Osu, M. Kawato, T.E. Milner, Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics. Exp. Brain Res. 151(2), 145–157 (2003)CrossRefGoogle Scholar
  34. 34.
    H. Gomi, R. Osu, Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J. Neurosci. 18(21), 8965–8978 (1998)Google Scholar
  35. 35.
    K.P. Tee, E. Burdet, C.M. Chew, T.E. Milner, A model of endpoint force and impedance in human arm movements. Biol. Cybern. 90, 368–375 (2004)CrossRefMATHGoogle Scholar
  36. 36.
    P. Morasso, Spatial control of arm movements. Exp. Brain Res. 42, 223–227 (1981)CrossRefGoogle Scholar
  37. 37.
    T. Flash, The control of hand equilibrium trajectories in multi-joint arm movements. Biol. Cybern. 57(4–5), 257–274 (1987)CrossRefMATHGoogle Scholar
  38. 38.
    H. Gomi, M. Kawato, Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science 272(5258), 117–120 (1996)CrossRefGoogle Scholar
  39. 39.
    J.-J.E. Slotine, W. Li, Applied Nonlinear Control (Prantice-Hall, 1991)Google Scholar
  40. 40.
    E. Burdet, A. Codourey, L. Rey, Experimental evaluation of nonlinear adaptive controllers. IEEE Control Syst. Mag. 18(2), 39–47 (1998)CrossRefGoogle Scholar
  41. 41.
    R. Osu, E. Burdet, D.W. Franklin, T.E. Milner, M. Kawato, Different mechanisms in adaptation to stable and unstable dynamics. J. Neurophysiol. 90(5), 3255–3269 (2003)CrossRefGoogle Scholar
  42. 42.
    Y. Li, E. Burdet, Dynamic analysis of simultaneous adaptation of force, impedance and trajectory (2016). arXiv:1605.07834 [cs.RO] (also submitted)
  43. 43.
    R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC, 1994)Google Scholar
  44. 44.
    M.H. Raibert, J.J. Craig, Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Contr. 103(2), 126–133 (1981)CrossRefGoogle Scholar
  45. 45.
    R.J. Anderson, M.W. Spong, Hybrid impedance control of robotic manipulators. IEEE J. Robot. Autom. 4(5), 549–556 (1982)CrossRefGoogle Scholar
  46. 46.
    E. Burdet, T.E. Milner, D.W. Franklin, Human Robotics: Neuromechanics and Motor Control (MIT press, 2013)Google Scholar
  47. 47.
    G. de Magistris, Etude et conception de la commande de mannequins virtuels dynamiques pour l’évaluation ergonomique des postes de travail. Ph.D. thesis, Université Pierre et Marie Curie Paris VI (2013)Google Scholar
  48. 48.
    E. Theodorou, J. Buchli, S. Schaal, A generalized path integral control approach to reinforcement learning. J. Mach. Learn. Res. 11, 3137–3181 (2010)MathSciNetMATHGoogle Scholar
  49. 49.
    N. Sebanz, H. Bekkering, G. Knoblich, Joint action: bodies and minds moving together. Trends Cognit. Sci. 10, 70–76 (2006)CrossRefGoogle Scholar
  50. 50.
    C. Basdogan, C.-H. Ho, M.A. Srinivasan, M. Slater, An experimental study on the role of touch in shared virtual environments. ACM Trans. Comput.-Hum. Interact. 7, 443–460 (2000)Google Scholar
  51. 51.
    K. Reed, M. Pershkin, Haptically linked dyads: are two motor-control systems better than one? Psychol. Sci. 17, 365–366 (2006)CrossRefGoogle Scholar
  52. 52.
    G. Ganesh, R. Osu, M. Kawato, E. Burdet, Two is better than one: physical interactions improve motor performance in humans. Sci. Rep. 4, 3824 (2014)CrossRefGoogle Scholar
  53. 53.
    R.P.R.D. van der Wel, G. Knoblich, N. Sebanz, Let the force be with us: Dyads exploit haptic coupling for coordination. J. Exp. Psychol. Hum. Percept. Perform. 37, 1420–1431 (2011)CrossRefGoogle Scholar
  54. 54.
    A. Melendez-Calderon, V. Komisar, E. Burdet, Interpersonal strategies for disturbance attenuation during a rhythmic joint motor action. Physiol. Behav. 147, 348–358 (2015)CrossRefGoogle Scholar
  55. 55.
    N. Jarrassé, T. Charalambous, E. Burdet, A framework to describe, analyze and generate interactive motor behaviors. PLoS ONE 7, e49945 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yanan Li
    • 1
  • Nathanael Jarrassé
    • 3
  • Etienne Burdet
    • 1
    • 2
  1. 1.Imperial College of Science, Technology and MedicineLondonUK
  2. 2.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.CNRSSorbonne University, UPMC Univ Paris 06ParisFrance

Personalised recommendations