Skip to main content

Inverse Optimal Control as a Tool to Understand Human Movement

  • Chapter
  • First Online:
Geometric and Numerical Foundations of Movements

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 117))

Abstract

In this paper, we discuss numerical foundations and computational results for inverse optimal control of human locomotion based on human motion capture data. The task of inverse optimal control is to identify the precise underlying objective function that is optimized in an observed motion. The presented methods can cope with partial and imprecise measurements of the state variables which is typically the case for motion capture recordings. We investigate human walking and running motions on different levels of detail and consequently different underlying models which all have their own motivation depending on the question asked. Whole-body models are used to explore the mechanisms of motions on joint level, while simple models describing the subject as a single entity can be used to describe overall locomotion behavior. At an intermediate level, template models describe some relative motions of bodies while maintaining simplicity and computational efficiency. Results will be presented for all model types and different walking tasks. We also show for some of them how the identified objective functions can be used to generate new waking motions for humanoid robots in novel scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ackermann, A.J. van den Bogert, Optimality principles for model-based prediction of human gait. J. Biomech. 43(6), 1055–1060 (2010)

    Article  Google Scholar 

  2. N. Aghasadeghi, T. Bretl, Maximum entropy inverse reinforcement learning in continuous state spaces with path integrals, in Proceedings of IEEE/RSJ IROS (2011)

    Google Scholar 

  3. S. Albrecht, C. Passenberg, M. Sobotka, A. Peer, M. Buss, M. Ulbrich, Optimization criteria for human trajectory formation in dynamic virtual environments. in Haptics: Generating and Perceiving Tangible Sensations, LNCS (2010)

    Google Scholar 

  4. R.M. Alexander, The gaits of bipedal and quadrupedal animals. Intern. J. Robot. Res. 3(2), 49–59 (1984)

    Article  Google Scholar 

  5. R.M. Alexander, Optima for Animals (Princeton University Press, New Jersey, 1996)

    Google Scholar 

  6. C.G. Atkeson, S. Schaal, Learning control in robotics. IEEE Robot. Autom. Mag. 17, 20–29 (2010)

    Google Scholar 

  7. C.G. Atkeson, C. Liu, Trajectory-based dynamic programming, in Modeling, Simulation and Optimization of Bipedal Walking Cognitive Systems Monographs, vol 18 (Springer, Berlin Heidelberg, 2013), pp. 1–15

    Google Scholar 

  8. B. Berret, E. Chiovetto, F. Nori, T. Pozzo, Evidence for composite cost functions in arm movement planning: an inverse optimal control approach. PLoS Comput. Biol. 7(10) (2011)

    Google Scholar 

  9. H.G. Bock, K.-J. Plitt, A multiple shooting algorithm for direct solution of optimal control problems, in Proceedings of the 9th IFAC World Congress, Budapest, (International Federation of Automatic Control, 1984), pp. 242–247

    Google Scholar 

  10. T. Buschmann, S. Lohmeier, M. Bachmayer, H. Ulbrich, F. Pfeiffer, A collocation method for real-time walking pattern generator, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2007)

    Google Scholar 

  11. D. Clever, K. Mombaur, A new template model for optimization studies of human walking on different terrains, in 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), (IEEE, 2014), pp. 500–505

    Google Scholar 

  12. D. Clever, K. Mombaur, An inverse optimal control approach for the transfer of human walking motions in constrained environment to humanoid robots, in Robotics: Science and Systems (RSS) (2016)

    Google Scholar 

  13. D. Clever, K. Mombaur, On the relevance of common humanoid gait generation strategies in human locomotion - an inverse optimal control approach, in Modeling, Simulation and Optimization of Complex Processes - HPSC 2015, ed. by X.P. Hoang, R. Rannacher, J. Schlöder, H.G. Bock (Springer, Heidelberg, 2016) (to appear)

    Google Scholar 

  14. D. Clever, R.M. Schemschat, M.L. Felis, K. Mombaur, Inverse optimal control based identification of optimality criteria in whole-body human walking on level ground, in Proceedings of International Conference on Biomedical Robotics and Biomechatronics (BioRob2016) (2016)

    Google Scholar 

  15. P. De Leva, Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. biomech. 29(9), 1223–1230 (1996)

    Article  Google Scholar 

  16. S. Dempe, N. Gadhi, Necessary optimality conditions for bilevel set optimization problems. Glob. Optim. 39(4), 529–542 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Dörr, N. Ratliff, J. Bohg, M. Toussaint, S. Schaal, Direct loss minimization inverse optimal control, in Proceedings of Robotics Sciece and Systems (RSS) (2015)

    Google Scholar 

  18. M.L. Felis, K. Mombaur, Synthesis of full-body 3-D human gait using optimal control methods, in IEEE International Conference on Robotics and Automation (ICRA 2016) (2016)

    Google Scholar 

  19. M.L. Felis, K. Mombaur, A. Berthoz, An optimal control approach to reconstruct human gait dynamics from kinematic data, in IEEE/RAS International Conference on Humanoid Robots (Humanoids 2015) (2015), pp. 1044–1051

    Google Scholar 

  20. T. Flash, N. Hogan, The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1984)

    Google Scholar 

  21. T. Geijtenbeek, M. van de Panne, A.F. van der Stappen, Flexible muscle-based locomotion for bipedal creatures. ACM Trans. Graph. 32(6) (2013)

    Google Scholar 

  22. H. Geyer, H. Herr, A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)

    Article  Google Scholar 

  23. K. Hatz, Efficient Numerical Methods for Hierarchical Dynamic Optimization with Application to Cerebral Palsy Gait Modeling. Ph.D. thesis, University of Heidelberg (2014)

    Google Scholar 

  24. K. Hatz, J.P. Schlöder, H.G. Bock, Estimating parameters in optimal control problems. SIAM J. Sci. Comput. 34(3), 1707–1728 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Hicheur, Q.-C. Pham, G. Arechavaleta, J.-P. Laumond, A. Berthoz, The formation of trajectories during goal-oriented locomotion in humans I: a stereotyped behaviour. Eur. J. Neurosci. 27(8), 2376–2390 (2007)

    Article  Google Scholar 

  26. M. Horn, M. Sreenivasa, K. Mombaur, Optimization model of the predictive head orientation for humanoid robots, in IEEE/RAS International Conference on Humanoid Robots (Humanoids 2014) (2014)

    Google Scholar 

  27. Y. Hu, K. Mombaur, Analysis of human leg joints compliance in different walking scenarios with an optimal control approach, in IFAC International Workshop on Periodic Control Systems (PSYCO 2016) (2016)

    Google Scholar 

  28. Y. Hu, K. Mombaur, F. Nori, Using optimal control to generate squat motions for the humanoid robot iCub with SEA, in Proceedings of Dynamic Walking (2015)

    Google Scholar 

  29. S. Kajita, T. Nagasaki, K. Kaneko, K. Yokoi, K. Tanie, A running controller of humanoid biped HRP-2LR, in ICRA (2005)

    Google Scholar 

  30. K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota, T. Isozumi, Design of prototype humanoid robotics platform for HRP, in 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3 (IEEE, 2002), pp. 2431–2436

    Google Scholar 

  31. K.H. Koch, K. Mombaur, P. Souères, Studying the effect of different optimization criteria on humanoid walking motions, in Simulation, Modeling, and Programming for Autonomous Robots, Lecture Notes in Computer Science, ed. by I. Noda, N. Ando, D. Brugali, J.J. Kuffner, vol. 7628 (Springer, Berlin Heidelberg, 2012), pp. 221–236

    Google Scholar 

  32. KoroiBot Motion Capture Database. https://koroibot-motion-database.humanoids.kit.edu/ (2016) Last visited, May 2016

  33. J.P. Laumond, G. Arechavaleta, T.-V.-A. Truong, H. Hicheur, Q.-C. Pham, A. Berthoz, The words of the human locomotion, in Proceedings of 13th International Symposium on Robotics Research (ISRR-2007) (Springer Star Series, 2007)

    Google Scholar 

  34. D.B. Leineweber, I. Bauer, H.G. Bock, J.P. Schlöder, An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization - Part I: theoretical aspects (2003), pp. 157 – 166

    Google Scholar 

  35. S. Levine, V. Koltun, Guided policy search, in ICML (2013)

    Google Scholar 

  36. C.K. Liu, A. Hertzmann, Z. Popovic, Learning physics-based motion style with inverse optimization. ACM Trans. Graph. (SIGGRAPH 2005) 24(3), 1071 (2005)

    Article  Google Scholar 

  37. Z.-Q. Luo, J.-S. Pang, D. Ralph, Mathematical Programs with Equilibrium Constraints (Cambridge University Press, Cambridge, 1996)

    Book  MATH  Google Scholar 

  38. J. Mainprice, R. Hayne, D. Berenson, Predicting human reaching motion in collaborative tasks using inverse optimal control and iterative re-planning, in 2015 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2015), pp. 885–892

    Google Scholar 

  39. C. Mandery, Ö. Terlemez, M. Do, N. Vahrenkamp, T. Asfour, The KIT whole-body human motion database, in IEEE International Conference on Advanced Robotics (ICAR 2015) (2015), pp. 329–336

    Google Scholar 

  40. G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. Von Hofsten, K. Rosander, M. Lopes, J. Santos-Victor et al., The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw. 23(8), 1125–1134 (2010)

    Article  Google Scholar 

  41. K. Mombaur, A.H. Olivier, A. Crétual, Forward and inverse optimal control of bipedal running, in Modeling, Simulation and Optimization of Bipedal Walking, Cognitive Systems Monographs, vol. 18 (Springer, Berlin Heidelberg, 2013), pp. 165–179

    Google Scholar 

  42. K. Mombaur, A. Truong, J.-P. Laumond, From human to humanoid locomotion an inverse optimal control approach. Auton. Robots 28(3), 369–383 (2010)

    Article  Google Scholar 

  43. Motion Similarity Study. https://orb.iwr.uni-heidelberg.de/ratingapp/similarity/ (2016) Last visited, May 2016

  44. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Ondřej, J. Pettré, A.-H. Olivier, S. Donikian, A synthetic-vision based steering approach for crowd simulation. ACM Trans. Graph. 29(4), 123:1–123:9 (2010)

    Google Scholar 

  46. T. Park, S. Levine, Inverse optimal control for humanoid locomotion, in Robotics Science and Systems-Workshop on Inverse Optimal Control and Robotic Learning from Demonstration (2013)

    Google Scholar 

  47. M.J.D. Powell, A direct search optimization method that models the objective and constraint functions by linear interpolation, in Advances in Optimization and Numerical Analysis (Springer, Heidelberg, 1994), pp. 51–67

    Google Scholar 

  48. M.J.D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives. Report No. DAMTP 2009/NA06, Centre for Mathematical Sciences, University of Cambridge, UK, 2009

    Google Scholar 

  49. T. Pozzo, A. Berthoz, L. Lefort, Head stabilization during various locomotor tasks in humans. Exp. Brain Res. 82(1), 97–106 (1990)

    Article  Google Scholar 

  50. G. Schultz, K. Mombaur, Modeling and optimal control of human-like running. Trans. Mechatron. 15(5) (2010)

    Google Scholar 

  51. M. Sreenivasa, K. Mombaur, J.P. Laumond, Walking paths to and from a goal differ: on the role of bearing angle in the formation of human locomotion paths. PLOS ONE 10(4) (2015)

    Google Scholar 

  52. Ö. Terlemez, S. Ulbrich, C. Mandery, M. Do, N. Vahrenkamp, T. Asfour, Master motor map (MMM) framework and toolkit for capturing, representing, and reproducing human motion on humanoid robots, in IEEE/RAS International Conference on Humanoid Robots (Humanoids 2014) (2014), pp. 894–901

    Google Scholar 

  53. E. Todorov, Optimality principles in sensorimotor control. Nat. Neurosci. 7(9), 907–915 (2004)

    Article  Google Scholar 

  54. J.J. Ye, Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307, 350–369 (2005)

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the EU seventh Framework Program (FP7/2007-2013) under grant agreement no 611909 (KoroiBot), the German Excellence Initiative and the French ANR project Locanthrope. We thank the Simulation and Optimization group of H.G. Bock at Heidelberg University for providing the optimal control code Muscod-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Mombaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mombaur, K., Clever, D. (2017). Inverse Optimal Control as a Tool to Understand Human Movement. In: Laumond, JP., Mansard, N., Lasserre, JB. (eds) Geometric and Numerical Foundations of Movements . Springer Tracts in Advanced Robotics, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-51547-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51547-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51546-5

  • Online ISBN: 978-3-319-51547-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics