Skip to main content

Momentum-Centered Control of Contact Interactions

  • Chapter
  • First Online:
Geometric and Numerical Foundations of Movements

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 117))

  • 2038 Accesses

Abstract

The control and planning of interaction forces is fundamental for locomotion and manipulation tasks since it is through the interaction with the environment that a robot can walk forward or manipulate objects. In this chapter we present a control and planning strategy focused on the control of interaction forces to generate multi-contact whole-body behaviors. Centered around the robot momentum dynamics, our approach consists of a hierarchical inverse dynamics controller that treats the control of the robot’s momentum as a contact force task and a trajectory optimization algorithm that can generate desired whole-body motions, momentum and desired contact forces for multiple contacts. Experimental results demonstrate the capabilities of the approach on a humanoid robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One could argue that it could be seen as an impedance task, which is also valid and does not change the argument.

References

  1. H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko, E. Yoshida, Model preview control in multi-contact motion-application to a humanoid robot, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (2014), pp. 4030–4035

    Google Scholar 

  2. T. Bretl, Motion planning of multi-limbed robots subject to equilibrium constraints: the free-climbing robot problem. Int. J. Robot. Res. 25(4), 317–342 (2006)

    Article  Google Scholar 

  3. J. Buchli, F. Stulp, E. Theodorou, S. Schaal, Learning variable impedance control. Int. J. Robot. Res. 30(7), 820–833 (2011)

    Article  Google Scholar 

  4. S. Calinon, I. Sardellitti, D.G. Caldwell, Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2010), pp. 249–254

    Google Scholar 

  5. H. Dai, A. Valenzuela, R. Tedrake, Whole-body motion planning with centroidal dynamics and full kinematics, in 2014 IEEE-RAS International Conference on Humanoid Robots (2014), pp. 295–302

    Google Scholar 

  6. D. Dimitrov, A. Sherikov, P.B. Wieber, Efficient resolution of potentially conflicting linear constraints in robotics, submitted (2015). https://hal.inria.fr/hal-01183003

  7. J. Englsberger, C. Ott, A. Albu-Schäffer, Three-dimensional bipedal walking control based on divergent component of motion. IEEE Trans. Robot. 31(2), 355–368 (2015)

    Article  Google Scholar 

  8. A. Escande, N. Mansard, P.B. Wieber, Hierarchical quadratic programming: fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)

    Article  Google Scholar 

  9. S. Feng, X. Xinjilefu, C.G. Atkeson, J. Kim, Optimization based controller design and implementation for the atlas robot in the darpa robotics challenge finals, in IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2015), pp. 1028–1035

    Google Scholar 

  10. K. Hauser, T. Bretl, J.C. Latombe, K. Harada, B. Wilcox, Motion planning for legged robots on varied terrain. Int. J. Robot. Res. 27(11–12), 1325–1349 (2008)

    Article  Google Scholar 

  11. A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, L. Righetti, Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid. Auton. Robots 40(3), 473–491 (2015)

    Article  Google Scholar 

  12. A. Herzog, N. Rotella, S. Schaal, L. Righetti, Trajectory generation for multi-contact momentum control, in IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2015), pp. 874–880

    Google Scholar 

  13. A. Herzog, S. Schaal, L. Righetti, Structured contact force optimization for kino-dynamic motion generation, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016)

    Google Scholar 

  14. N. Hogan, Impedance control - an approach to manipulation. J. Dyn. Syst. Meas. Control (Trans. ASME) 107(1), 1–24 (1985)

    Article  MATH  Google Scholar 

  15. S.H. Hyon, Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces. IEEE Trans. Robot. 25(1), 171–178 (2009)

    Article  Google Scholar 

  16. G. Jarquin, A. Escande, G. Arechavaleta, T. Moulard, Y. Eoshida, V. Parra-Vega, Real-time smooth task transitions for hierarchical inverse kinematics, in IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2013), pp. 528–533

    Google Scholar 

  17. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, in IEEE International Conference on Robotics and Automation (ICRA) (2003), vol. 2, pp. 1620–1626

    Google Scholar 

  18. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2003), pp. 1644–1650

    Google Scholar 

  19. M. Kalakrishnan, L. Righetti, P. Pastor, S. Schaal, Learning force control policies for compliant manipulation, in IEEE International Conference on Intelligent Robots and Systems (IROS) (2011), pp. 4639–4644

    Google Scholar 

  20. O. Kanoun, F. Lamiraux, P.B. Wieber, Kinematic control of redundant manipulators: generalizing the task-priority framework to inequality task. IEEE Trans. Robot. 27(4), 785–792 (2011)

    Article  Google Scholar 

  21. D. Kappler, P. Pastor, M. Kalakrishnan, M. Wuthrich, S. Schaal, Data-driven online decision making for autonomous manipulation, in Proceedings of Robotics: Science and Systems (Rome, Italy, 2015)

    Google Scholar 

  22. M. de Lasa, I. Mordatch, A. Hertzmann, Feature-based locomotion controllers. ACM Trans. Gr. 29(4), 131:1–131:10 (2010)

    Google Scholar 

  23. S.H. Lee, A. Goswami, A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Auton. Robots 33, 399–414 (2012)

    Article  Google Scholar 

  24. S. Lengagne, J. Vaillant, E. Yoshida, A. Kheddar, Generation of whole-body optimal dynamic multi-contact motions. Int. J. Robot. Res. 32(9–10), 1104–1119 (2013)

    Article  Google Scholar 

  25. I. Mordatch, E. Todorov, Z. Popović, Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Gr. 31(4), 43:1–43:8 (2012)

    Article  Google Scholar 

  26. D.E. Orin, A. Goswami, Centroidal momentum matrix of a humanoid robot: structure and properties, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2008), pp. 653–659

    Google Scholar 

  27. C. Ott, M.A. Roa, G. Hirzinger, Posture and balance control for biped robots based on contact force optimization, in 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2011), pp. 26–33

    Google Scholar 

  28. P. Pastor, L. Righetti, M. Kalakrishnan, S. Schaal, Online movement adaptation based on previous sensor experiences, in IEEE International Conference on Intelligent Robots and Systems (IROS) (2011), pp. 365–371

    Google Scholar 

  29. B. Ponton, A. Herzog, S. Schaal, L. Righetti, A convex model of momentum dynamics for multi-contact motion generation, in IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2016)

    Google Scholar 

  30. L. Righetti, J. Buchli, M. Mistry, M. Kalakrishnan, S. Schaal, Optimal distribution of contact forces with inverse-dynamics control. Int. J. Robot. Res. 32(3), 280–298 (2013)

    Article  Google Scholar 

  31. N. Rotella, M. Bloesch, L. Righetti, S. Schaal, State estimation for a humanoid robot, in 2014 IEEE/RSJ Conference on Intelligent Robots and Systems (Chicago, 2014), pp. 952–958

    Google Scholar 

  32. L. Saab, O. Ramos, N. Mansard, P. Soueres, J.Y. Fourquet, Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Trans. Robot. 29, 346–362 (2013)

    Article  Google Scholar 

  33. A. Sherikov, D. Dimitrov, P.B. Wieber, Balancing a humanoid robot with a prioritized contact force distribution, in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (2015), pp. 223–228

    Google Scholar 

  34. E. Todorov, A convex, smooth and invertible contact model for trajectory optimization, in 2011 IEEE International Conference on Robotics and Automation (ICRA) (2011), pp. 1071–1076

    Google Scholar 

  35. S. Tonneau, N. Mansard, C. Park, D. Manocha, F. Multon, J. Pettre, A Reachability-based planner for sequences of acyclic contacts in cluttered environments, in International Symposium on Robotics Research (ISSR 2015) (2015)

    Google Scholar 

  36. P.M. Wensing, D.E. Orin, Generation of dynamic humanoid behaviors through task-space control with conic optimization, in 2013 IEEE International Conference on Robotics and Automation (ICRA) (2013), pp. 3103–3109

    Google Scholar 

  37. P.B. Wieber, Holonomy and nonholonomy in the dynamics of articulated motion, in Fast Motions in Biomechanics and Robotics: Optimization and Feedback Control, ed. by M. Diehl, K. Mombaur (Springer, Berlin Heidelberg, 2006), pp. 411–425

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max-Planck Society, the European Research Council under the European Union’s Horizon 2020 research and innovation programme (ERC StG CONT-ACT, grant agreement No 637935) and the Max Planck ETH Center for Learning Systems. We would also like to warmly thank two anonymous reviewers for their constructive comments that helped significantly improve the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Righetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Righetti, L., Herzog, A. (2017). Momentum-Centered Control of Contact Interactions. In: Laumond, JP., Mansard, N., Lasserre, JB. (eds) Geometric and Numerical Foundations of Movements . Springer Tracts in Advanced Robotics, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-51547-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51547-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51546-5

  • Online ISBN: 978-3-319-51547-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics