Advertisement

Momentum-Centered Control of Contact Interactions

  • Ludovic Righetti
  • Alexander Herzog
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 117)

Abstract

The control and planning of interaction forces is fundamental for locomotion and manipulation tasks since it is through the interaction with the environment that a robot can walk forward or manipulate objects. In this chapter we present a control and planning strategy focused on the control of interaction forces to generate multi-contact whole-body behaviors. Centered around the robot momentum dynamics, our approach consists of a hierarchical inverse dynamics controller that treats the control of the robot’s momentum as a contact force task and a trajectory optimization algorithm that can generate desired whole-body motions, momentum and desired contact forces for multiple contacts. Experimental results demonstrate the capabilities of the approach on a humanoid robot.

Keywords

Contact Force Optimal Control Problem Humanoid Robot Legged Robot Joint Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Max-Planck Society, the European Research Council under the European Union’s Horizon 2020 research and innovation programme (ERC StG CONT-ACT, grant agreement No 637935) and the Max Planck ETH Center for Learning Systems. We would also like to warmly thank two anonymous reviewers for their constructive comments that helped significantly improve the chapter.

References

  1. 1.
    H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko, E. Yoshida, Model preview control in multi-contact motion-application to a humanoid robot, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (2014), pp. 4030–4035Google Scholar
  2. 2.
    T. Bretl, Motion planning of multi-limbed robots subject to equilibrium constraints: the free-climbing robot problem. Int. J. Robot. Res. 25(4), 317–342 (2006)CrossRefGoogle Scholar
  3. 3.
    J. Buchli, F. Stulp, E. Theodorou, S. Schaal, Learning variable impedance control. Int. J. Robot. Res. 30(7), 820–833 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Calinon, I. Sardellitti, D.G. Caldwell, Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2010), pp. 249–254Google Scholar
  5. 5.
    H. Dai, A. Valenzuela, R. Tedrake, Whole-body motion planning with centroidal dynamics and full kinematics, in 2014 IEEE-RAS International Conference on Humanoid Robots (2014), pp. 295–302Google Scholar
  6. 6.
    D. Dimitrov, A. Sherikov, P.B. Wieber, Efficient resolution of potentially conflicting linear constraints in robotics, submitted (2015). https://hal.inria.fr/hal-01183003
  7. 7.
    J. Englsberger, C. Ott, A. Albu-Schäffer, Three-dimensional bipedal walking control based on divergent component of motion. IEEE Trans. Robot. 31(2), 355–368 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Escande, N. Mansard, P.B. Wieber, Hierarchical quadratic programming: fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Feng, X. Xinjilefu, C.G. Atkeson, J. Kim, Optimization based controller design and implementation for the atlas robot in the darpa robotics challenge finals, in IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2015), pp. 1028–1035Google Scholar
  10. 10.
    K. Hauser, T. Bretl, J.C. Latombe, K. Harada, B. Wilcox, Motion planning for legged robots on varied terrain. Int. J. Robot. Res. 27(11–12), 1325–1349 (2008)CrossRefGoogle Scholar
  11. 11.
    A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, L. Righetti, Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid. Auton. Robots 40(3), 473–491 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Herzog, N. Rotella, S. Schaal, L. Righetti, Trajectory generation for multi-contact momentum control, in IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2015), pp. 874–880Google Scholar
  13. 13.
    A. Herzog, S. Schaal, L. Righetti, Structured contact force optimization for kino-dynamic motion generation, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016)Google Scholar
  14. 14.
    N. Hogan, Impedance control - an approach to manipulation. J. Dyn. Syst. Meas. Control (Trans. ASME) 107(1), 1–24 (1985)CrossRefzbMATHGoogle Scholar
  15. 15.
    S.H. Hyon, Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces. IEEE Trans. Robot. 25(1), 171–178 (2009)CrossRefGoogle Scholar
  16. 16.
    G. Jarquin, A. Escande, G. Arechavaleta, T. Moulard, Y. Eoshida, V. Parra-Vega, Real-time smooth task transitions for hierarchical inverse kinematics, in IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2013), pp. 528–533Google Scholar
  17. 17.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, in IEEE International Conference on Robotics and Automation (ICRA) (2003), vol. 2, pp. 1620–1626Google Scholar
  18. 18.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2003), pp. 1644–1650Google Scholar
  19. 19.
    M. Kalakrishnan, L. Righetti, P. Pastor, S. Schaal, Learning force control policies for compliant manipulation, in IEEE International Conference on Intelligent Robots and Systems (IROS) (2011), pp. 4639–4644Google Scholar
  20. 20.
    O. Kanoun, F. Lamiraux, P.B. Wieber, Kinematic control of redundant manipulators: generalizing the task-priority framework to inequality task. IEEE Trans. Robot. 27(4), 785–792 (2011)CrossRefGoogle Scholar
  21. 21.
    D. Kappler, P. Pastor, M. Kalakrishnan, M. Wuthrich, S. Schaal, Data-driven online decision making for autonomous manipulation, in Proceedings of Robotics: Science and Systems (Rome, Italy, 2015)Google Scholar
  22. 22.
    M. de Lasa, I. Mordatch, A. Hertzmann, Feature-based locomotion controllers. ACM Trans. Gr. 29(4), 131:1–131:10 (2010)Google Scholar
  23. 23.
    S.H. Lee, A. Goswami, A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Auton. Robots 33, 399–414 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Lengagne, J. Vaillant, E. Yoshida, A. Kheddar, Generation of whole-body optimal dynamic multi-contact motions. Int. J. Robot. Res. 32(9–10), 1104–1119 (2013)CrossRefGoogle Scholar
  25. 25.
    I. Mordatch, E. Todorov, Z. Popović, Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Gr. 31(4), 43:1–43:8 (2012)CrossRefGoogle Scholar
  26. 26.
    D.E. Orin, A. Goswami, Centroidal momentum matrix of a humanoid robot: structure and properties, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2008), pp. 653–659Google Scholar
  27. 27.
    C. Ott, M.A. Roa, G. Hirzinger, Posture and balance control for biped robots based on contact force optimization, in 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2011), pp. 26–33Google Scholar
  28. 28.
    P. Pastor, L. Righetti, M. Kalakrishnan, S. Schaal, Online movement adaptation based on previous sensor experiences, in IEEE International Conference on Intelligent Robots and Systems (IROS) (2011), pp. 365–371Google Scholar
  29. 29.
    B. Ponton, A. Herzog, S. Schaal, L. Righetti, A convex model of momentum dynamics for multi-contact motion generation, in IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2016)Google Scholar
  30. 30.
    L. Righetti, J. Buchli, M. Mistry, M. Kalakrishnan, S. Schaal, Optimal distribution of contact forces with inverse-dynamics control. Int. J. Robot. Res. 32(3), 280–298 (2013)CrossRefGoogle Scholar
  31. 31.
    N. Rotella, M. Bloesch, L. Righetti, S. Schaal, State estimation for a humanoid robot, in 2014 IEEE/RSJ Conference on Intelligent Robots and Systems (Chicago, 2014), pp. 952–958Google Scholar
  32. 32.
    L. Saab, O. Ramos, N. Mansard, P. Soueres, J.Y. Fourquet, Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Trans. Robot. 29, 346–362 (2013)CrossRefGoogle Scholar
  33. 33.
    A. Sherikov, D. Dimitrov, P.B. Wieber, Balancing a humanoid robot with a prioritized contact force distribution, in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (2015), pp. 223–228Google Scholar
  34. 34.
    E. Todorov, A convex, smooth and invertible contact model for trajectory optimization, in 2011 IEEE International Conference on Robotics and Automation (ICRA) (2011), pp. 1071–1076Google Scholar
  35. 35.
    S. Tonneau, N. Mansard, C. Park, D. Manocha, F. Multon, J. Pettre, A Reachability-based planner for sequences of acyclic contacts in cluttered environments, in International Symposium on Robotics Research (ISSR 2015) (2015)Google Scholar
  36. 36.
    P.M. Wensing, D.E. Orin, Generation of dynamic humanoid behaviors through task-space control with conic optimization, in 2013 IEEE International Conference on Robotics and Automation (ICRA) (2013), pp. 3103–3109Google Scholar
  37. 37.
    P.B. Wieber, Holonomy and nonholonomy in the dynamics of articulated motion, in Fast Motions in Biomechanics and Robotics: Optimization and Feedback Control, ed. by M. Diehl, K. Mombaur (Springer, Berlin Heidelberg, 2006), pp. 411–425CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Max-Planck Institute for Intelligent SystemsTuebingenGermany

Personalised recommendations