Advertisement

Modeling of Coordinated Human Body Motion by Learning of Structured Dynamic Representations

  • Albert Mukovskiy
  • Nick Taubert
  • Dominik Endres
  • Christian Vassallo
  • Maximilien Naveau
  • Olivier Stasse
  • Philippe Souères
  • Martin A. Giese
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 117)

Abstract

The modeling and online-generation of human-like body motion is a central topic in computer graphics and robotics. The analysis of the coordination structure of complex body movements in humans helps to develop flexible technical algorithms for movement synthesis. This chapter summarizes work that uses learned structured representations for the synthesis of complex human-like body movements in real-time. This work follows two different general approaches. The first one is to learn spatio-temporal movement primitives from human kinematic data, and to derive from this Dynamic Movement Primitives (DMPs), which are modeled by nonlinear dynamical systems. Such dynamical primitives are then coupled and embedded into networks that generate complex human-like behaviors online, as self-organized solutions of the underlying dynamics. The flexibility of this approach is demonstrated by synthesizing complex coordinated movements of single agents and crowds. We demonstrate that Contraction Theory provides an appropriate framework for the design of the stability properties of such complex composite systems. In addition, we demonstrate how such primitive-based movement representations can be embedded into a model-based predictive control architecture for the humanoid robot HRP-2. Using the primitive-based trajectory synthesis algorithm for fast online planning of full-body movements, we were able to realize flexibly adapting human-like multi-step sequences, which are coordinated with goal-directed reaching movements. The resulting architecture realizes fast online planing of multi-step sequences, at the same time ensuring dynamic balance during walking and the feasibility of the movements for the robot. The computation of such dynamically feasible multi-step sequences using state-of-the-art optimal control approaches would take hours, while our method works in real-time. The second presented framework for the online synthesis of complex body motion is based on the learning of hierarchical probabilistic generative models, where we exploit Bayesian machine learning approaches for nonlinear dimensionality reduction and the modeling of dynamical systems. Combining Gaussian Process Latent Variable Models (GPLVMs) and Gaussian Process Dynamical Models (GPDMs), we learned models for the interactive movements of two humans. In order to build an online reactive agent with controlled emotional style, we replaced the state variables of one actor by measurements obtained by real-time motion capture from a user and determined the most probable state of the interaction partner using Bayesian model inversion. The proposed method results in highly believable human-like reactive body motion.

Keywords

Dynamic movement primitives Animation Machine learning Gaussian process latent variable model Gaussian process dynamical model Navigation Walking pattern generator Goal-directed movements Motor coordination Action sequences 

Notes

Acknowledgements

The work supported by EC FP7 under grant agreements FP7-611909 (Koroibot), H2020 ICT-644727 (CogIMon), FP7-604102 (HBP), PITN-GA-011-290011 (ABC), DFG GI 305/4-1, DFG GZ: KA 1258/15-1, DFG IRTG-GRK 1901 ‘The brain in action’, BMBF, FKZ: 01GQ1002A, and DFG SFB/TRR 135 Cardinal Mechanisms of Perception, project C06.

References

  1. 1.
    A. Ajoudani, J. Lee, A. Rocchi, M. Ferrati, E.M. Hoffman, A. Settimi, D.G. Caldwell, A. Bicchi, N.G. Tsagarakis, A manipulation framework for compliant humanoid COMAN: application to a valve turning task, in 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2014), pp. 664–670Google Scholar
  2. 2.
    O. Arikan, D.A. Forsyth, J.F. O’Brien, Motion synthesis from annotations. ACM Trans. Gr. SIGGRAPH ’03 22(3), 402–408 (2003)Google Scholar
  3. 3.
    C.G. Atkeson, A.W. Moore, S. Schaal, Locally weighted learning. A.I. Review 11, 11–73 (1997)Google Scholar
  4. 4.
    N.A. Bernstein, The Coordination and Regulation of Movements (Pergamon Press, New York, 1967)Google Scholar
  5. 5.
    C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2007)Google Scholar
  6. 6.
    M. Brand, A. Hertzmann, Style machines, in Proceedings of SIGGRAPH Conference (2000), pp. 183–192Google Scholar
  7. 7.
    M. Brandao, L. Jamone, P. Kryczka, N. Endo, K. Hashimoto, A. Takanishi, Reaching for the unreachable: integration of locomotion and whole-body movements for extended visually guided reaching, in In Proceedings of 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2013), pp. 28–33Google Scholar
  8. 8.
    H. Carnahan, B.J. McFadyen, D.L. Cockell, A.H. Halverson, The combined control of locomotion and prehension. Neurosci. Res. Commun. 19, 91–100 (1996)CrossRefGoogle Scholar
  9. 9.
    J. Chai, J.K. Hodgins, Performance animation from low-dimensional control signals. ACM Trans. Gr. SIGGRAPH ’05 24(3), 686–696 (2005)Google Scholar
  10. 10.
    C.-C. Chang, C.-J. Lin, LIBSVM: A Library for Support Vector Machines (2001). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  11. 11.
    E. Chiovetto, A. d’Avella, D. Endres, M.A. Giese, A unifying algorithm for the identification of kinematic and electromyographic motor primitives, in Bernstein Conference (2013)Google Scholar
  12. 12.
    E. Chiovetto, M.A. Giese, Kinematics of the coordination of pointing during locomotion. PLoS One 8(11), e79555 (2013)Google Scholar
  13. 13.
    W. Daamen, S.P. Hoogendoorn, Controlled experiments to derive walking behaviour. Eur. J. Trans. Infrastruct. Res. 3(1), 39–59 (2003)Google Scholar
  14. 14.
    A. d’Avella, E. Bizzi, Shared and specific muscle synergies in neural motor behaviours. Proc. Natl. Acad. Sci. USA 102(8), 3076–3081 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Degallier, L. Righetti, S. Gay, A.J. Ijspeert, Towards simple control for complex, autonomous robotic applications: combining discrete and rhythmic motor primitives. Auton. Robots 31(2–3), 155–181 (2011)Google Scholar
  16. 16.
    A.W. Feng, Y. Xu, A. Shapiro, An example-based motion synthesis technique for locomotion and object manipulation. Proc. ACM SIGGRAPH I3D, 95–102 (2012)Google Scholar
  17. 17.
    T. Flash, B. Hochner, Motor primitives in vertebrates and invertebrates. Current Opinion Neurobiol. 15(6), 660–666 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Fod, M.J. Mataric, O.C. Jenkins, Automated derivation of primitives for movement classification. Auton. Robots 12(1), 39–54 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    A. Gams, B. Nemec, L. Zlajpah, M. Wächter, A.J. Ijspeert, T. Asfour, A. Ude, Modulation of motor primitives using force feedback: Interaction with the environment and bimanual tasks, in In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013) (2013), pp. 5629–5635Google Scholar
  20. 20.
    M. Gienger, M. Toussaint, C. Goerick, Whole-body motion planning building blocks for intelligent systems, in Motion Planning for Humanoid Robots, ed. by K. Harada (Springer, Berlin, 2010), pp. 67–98Google Scholar
  21. 21.
    M.A. Giese, A. Mukovskiy, A. Park, L. Omlor, J.J.E. Slotine, Real-time synthesis of body movements based on learned primitives, in Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, ed. by D. Cremers et al. (Springer, Berlin, 2009), pp. 107–127Google Scholar
  22. 22.
    M. Gleicher, Motion path editing, in Proceeding of 2001 ACM Symposium on Interactive 3D Graphics (2001), pp. 195–202Google Scholar
  23. 23.
    M. Gleicher, H.J. Shin, L. Kovar, A. Jepsen, Snap-together motion: assembling run-time animation. ACM Trans. Gr. SIGGRAPH ’03 22(3), 702–702 (2003)Google Scholar
  24. 24.
    K. Grochow, S.L. Martin, A. Hertzmann, Z. Popovic, Style-based inverse kinematics. ACM Trans. Gr. 23(3), 522–531 (2004)CrossRefGoogle Scholar
  25. 25.
    D. Helbing, P. Molnár, I.J. Farkas, K. Bolay, Self-organizing pedestrian movement. Environ. Plan. B: Plan. Design 28, 361–383 (2001)CrossRefGoogle Scholar
  26. 26.
    A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, M. Diehl, Online walking motion generation with automatic foot step placement. Adv. Robot. 24(5–6), 719–737 (2010)CrossRefGoogle Scholar
  27. 27.
    E. Hsu, K. Pulli, J. Popovic, Style translation for human motion. ACM Trans. Gr. 24(3), 1082–1089 (2005)CrossRefGoogle Scholar
  28. 28.
    Y. Huang, M. Kallmann, Planning motions for virtual demonstrators, in Intelligent Virtual Agents (Springer, Berlin, 2014), pp. 190–203Google Scholar
  29. 29.
    A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    L. Ikemoto, O. Arikan, D.A. Forsyth, Generalizing motion edits with Gaussian processes. ACM Trans. Gr. 28(1), 1–12 (2009)Google Scholar
  31. 31.
    Y. Ivanenko, R. Poppele, F. Lacquaniti, Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 556, 267–282 (2004)CrossRefGoogle Scholar
  32. 32.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, in Proceedings of International Conference on Robotics and Automation (2003), pp. 1620–1626Google Scholar
  33. 33.
    J. Koschorreck, K. Mombaur, Modeling and optimal control of human platform diving with somersaults and twists. Optim. Eng. 13(1), 29–56 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    L. Kovar, M. Gleicher, F. Pighin, Motion graphs. Proc. SIGGRAPH 2002, 473–482 (2002)Google Scholar
  35. 35.
    S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, R. Tedrake, Optimization–based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Robot. 1–27 (2015)Google Scholar
  36. 36.
    T. Kwon, K.H. Lee, J. Lee, S. Takahashi, Group motion editing. ACM Trans. Gr. SIGGRAPH 2008 27(3), 80–87 (2008)Google Scholar
  37. 37.
    W.M. Land, D.A. Rosenbaum, S. Seegelke, T. Schack, Whole-body posture planning in anticipation of a manual prehension task: prospective and retrospective effects. Acta Psychol. 114, 298–307 (2013)CrossRefGoogle Scholar
  38. 38.
    M. Lau, Z. Bar-Joseph, J. Kuffner, Modeling spatial and temporal variation in motion data. ACM Trans. Gr. 28(5), Art.No.171 (2009)Google Scholar
  39. 39.
    N.D. Lawrence, Learning for larger datasets with the Gaussian process latent variable model. J. Mach. Learn. Res. - Proc. Track 2, 243–250 (2007)Google Scholar
  40. 40.
    N.D. Lawrence, R. Court, Local distance preservation in the GP-LVM through back constraints, in ICML (2006), pp. 513–520Google Scholar
  41. 41.
    A. Lerner, E. Fitusi, Y. Chrysanthou, D. Cohen-Or, Fitting behaviors to pedestrian simulations, in Proceedings of Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2009), pp. 199–208Google Scholar
  42. 42.
    S. Levine, J.M. Wang, A. Haraux, Z. Popovi\(\acute{c}\), V. Koltun, Continuous character control with low-dimensional embeddings. ACM Trans. Gr. ACM SIGGRAPH 2012 31(4), Art.No.28 (2012)Google Scholar
  43. 43.
    Y. Li, T. Wang, H.Y. Shum, Motion texture: a two level statistical model for character motion synthesis. Proc. SIGGRAPH 2002, 465–472 (2002)Google Scholar
  44. 44.
    G. Liu, M. Xu, Z. Pan, A. El Rhalibi, Human motion generation with multifactor models. J. Comput. Anim. Virtual Worlds 22(4), 351–359 (2011)CrossRefGoogle Scholar
  45. 45.
    W. Lohmiller, J.J.E. Slotine, On contraction analysis for nonlinear systems. Automatica 34(6), 683–696 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    N. Mansard, O. Stasse, P. Evrard, A. Kheddar, A versatile generalized inverted kinematics implementation for collaborative working humanoid robots: the stack of tasks, in Proceedings of International Conference on Advanced Robotics (ICAR) (2009), p. art.119Google Scholar
  47. 47.
    R.G. Marteniuk, C.P. Bertram, Contributions of gait and trunk movement to prehension: perspectives from world- and body centered coordinates. Motor Control 5, 151–164 (2001)CrossRefGoogle Scholar
  48. 48.
    M. Mühlig, M. Gienger, J.J. Steil, Human-robot interaction for learning and adaptation of object movements, in In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010) (2010), pp. 4901–4907Google Scholar
  49. 49.
    A. Mukovskiy, W. Land, T. Schack, M.A. Giese, Modeling of predictive human movement coordination patterns for applications in computer graphics. J. WSCG 23(2), 139–146 (2015)Google Scholar
  50. 50.
    A. Mukovskiy, A.-N. Park, L. Omlor, J.-J. Slotine, M.A. Giese, Self-organization of character behavior by mixing of learned movement primitives, in In Proceedings of the 13th Fall Workshop on Vision, Modeling, and Visualization (VMV) (2008), pp. 121–130Google Scholar
  51. 51.
    A. Mukovskiy, J.J.E. Slotine, M.A. Giese, Analysis and design of the dynamical stability of collective behavior in crowds. J. WSCG 19(1–3), 69–76 (2011)Google Scholar
  52. 52.
    A. Mukovskiy, J.J.E. Slotine, M.A. Giese, Dynamically stable control of articulated crowds. J. Comput. Sci. 4(4), 304–310 (2013)CrossRefGoogle Scholar
  53. 53.
    A. Mukovskiy, C. Vassallo, M. Naveau, O. Stasse, P. Souères, M.A. Giese, Adaptive synthesis of dynamically feasible full-body movements for the humanoid robot HRP-2 by flexible combination of learned dynamic movement primitives. Robot. Auton. Syst. J. Comput. Sci. (submitted to) (2016)Google Scholar
  54. 54.
    R. Narain, A. Golas, S. Curtis, M. Lin, Aggregate dynamics for dense crowd simulation. ACM Trans. Gr. Art.122 28(5), 1–8 (2009)Google Scholar
  55. 55.
    M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, P. Souères, A reactive walking pattern generator based on nonlinear model predictive control. IEEE Robot. Autom. Lett. (2016) (in press)Google Scholar
  56. 56.
    L. Omlor, M.A. Giese, Anechoic blind source separation using Wigner marginals. J. Mach. Learn. Res. 12, 1111–1148 (2011)Google Scholar
  57. 57.
    D.A. Paley, N.E. Leonard, R. Sepulchre, D. Grunbaum, J.K. Parrish, Oscillator models and collective motion: spatial patterns in the dynamics of engineered and biological networks. IEEE Control Syst. Mag. 27, 89–105 (2007)CrossRefGoogle Scholar
  58. 58.
    S. Paris, J. Pettré, S. Donikian, Pedestrian reactive navigation for crowd simulation: a predictive approach. Proc. Eurographics 2007 26(3), 665–674 (2007)Google Scholar
  59. 59.
    A. Park, A. Mukovskiy, L. Omlor, M.A. Giese, Self organized character animation based on learned synergies from full-body motion capture data, in Proceedings of International Conference on Cognitive Systems, (CogSys, 2008) (2008)Google Scholar
  60. 60.
    A. Park, A. Mukovskiy, L. Omlor, M.A. Giese, Synthesis of character behaviour by dynamic interaction of synergies learned from motion capture data, in The 16-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision’2008, WSCG’08 (2008), pp. 9–16Google Scholar
  61. 61.
    A. Park, A. Mukovskiy, J.J.E. Slotine, M.A. Giese, Design of dynamical stability properties in character animation. Proc. VRIPHYS 09, 85–94 (2009)Google Scholar
  62. 62.
    S.I. Park, H.J. Shin, S.Y. Shin, On-line locomotion generation based on motion blending, in Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2002), pp. 105–111Google Scholar
  63. 63.
    N. Pelechano, J.M. Allbeck, N.I. Badler, Controlling individual agents in high-density crowd simulation, in Proceedings of Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2007), pp. 99–108Google Scholar
  64. 64.
    Q.C. Pham, J.J.E. Slotine, Stable concurrent synchronization in dynamic system networks. Neural Netw. 20(3), 62–77 (2007)CrossRefzbMATHGoogle Scholar
  65. 65.
    C.L. Roether, L. Omlor, A. Christensen, M.A. Giese, Critical features for the perception of emotion from gait. J. Vis. 9(6), 15 (2009)Google Scholar
  66. 66.
    C. Rose, M. Cohen, B. Bodenheimer, Verbs and adverbs: multidimensional motion interpolation using radial basis functions. IEEE Comput. Gr. Appl. 18(5), 32–40 (1998)CrossRefGoogle Scholar
  67. 67.
    C. Rose, B. Guenter, B. Bodenheimer, M. Cohen, Efficient generation of motion transitions using spacetime constraints, in Proceedings of ACM SIGGRAPH’96 International Conference on Computer Graphics and Interactive Techniques 30, 147–154 (1996)Google Scholar
  68. 68.
    D.A. Rosenbaum, Reaching while walking: reaching distance costs more than walking distance. Psychon. Bull. Rev. 15, 1100–1104 (2008)CrossRefGoogle Scholar
  69. 69.
    D.A. Rosenbaum, R.G. Cohen, S.A. Jax, D.J. Weiss, R. van der Wel, The problem of serial order in behavior: Lashley’s legacy. Hum. Mov. Sci. 26(4), 525–554 (2007) (Europ, Workshop on Mov, Sci., 2007)Google Scholar
  70. 70.
    A. Safonova, J. Hodgins, N. Pollard, Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Gr. 23(3), 514–521 (2004)CrossRefGoogle Scholar
  71. 71.
    M. Santello, M. Flanders, J.F. Soechting, Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)Google Scholar
  72. 72.
    L. Scardovi, R. Sepulchre, Collective optimization over average quantities, in Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, California (2006), pp. 3369–3374Google Scholar
  73. 73.
    S. Schaal, S. Kotosaka, D. Sternad, Nonlinear dynamical systems as movement primitives, in Proceedings of 1st IEEE-RAS International Conference on Humanoid Robots, Humanoids (Springer, Berlin, 2000), pp. 117–124Google Scholar
  74. 74.
    G. Schöner, M. Dose, C. Engels, Dynamics of behavior: theory and applications for autonomous robot architectures. Robot. Auton. Syst. 16(2–4), 213–245 (1995)CrossRefGoogle Scholar
  75. 75.
    A. Shoulson, N. Marshak, M. Kapadia, N.I. Badler, ADAPT: the agent development and prototyping testbed. IEEE Trans. Vis. Comput. Gr. (TVCG) 99, 1–14 (2014)Google Scholar
  76. 76.
    M. Sreenivasa, P. Souères, J.-P. Laumond, Walking to grasp: modeling of human movements as invariants and an application to humanoid robotics. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 42(4), 880–893 (2012)Google Scholar
  77. 77.
    O. Stasse, Habilitation Thesis. Paul Sabatier University, CNRS, Toulouse (2013)Google Scholar
  78. 78.
    O. Stasse, B. Verelst, A. Davison, N. Mansard, F. Saidi, B. Vanderborght, C. Esteves, K. Yokoi, Integrating walking and vision to increase humanoid autonomy. Int. J. Humanoid Robot. Spec. Issue Cogn. Humanoid Robot. 5, 287–310 (2008)Google Scholar
  79. 79.
    M. Taïx, M.T. Tran, E. Souères, P. Guigon, Generating human-like reaching movements with a humanoid robot: a computational approach. J. Comput. Sci. 4, 269–284 (2013)CrossRefGoogle Scholar
  80. 80.
    N. Taubert, A. Christensen, D. Endres, M.A. Giese, Online simulation of emotional interactive behaviors with hierarchical Gaussian Process Dynamical Models, in Proceedings of SAP’12 (ACM Press, New York, 2012), pp. 25–32Google Scholar
  81. 81.
    N. Taubert, D. Endres, A. Christensen, M.A. Giese, Shaking hands in latent space: modeling emotional interactions with Gaussian process latent variable models, in Proceedings of KI 2011: Advances in Artificial Intelligence, LNAI, ed. by S. Edelkamp, J. Bachpages (Springer, Berlin, 2011), pp. 330–334Google Scholar
  82. 82.
    N. Taubert, D. Endres, M.A. Giese, Reactive virtual reality avatar with controllable emotional style based on hierarchical Gaussian process dynamical models, in Proceedings of ICANN 2014 (2014), p. Art.No.25Google Scholar
  83. 83.
    N. Taubert, M. Löffler, N. Ludolph, A. Christensen, D. Endres, M.A. Giese, A virtual reality setup for controllable, stylized real-time interactions between humans and avatars with sparse Gaussian process dynamical models, in Proceedings of SAP’13 (2013), p. 41–44Google Scholar
  84. 84.
    D. Velychko, D. Endres, The variational Gaussian process dynamical model, in Proceedings of the Workshop on Advances in Approximate Bayesian Inference (NIPS, Montreal, Canada, 2015), pp. 1–6Google Scholar
  85. 85.
    D. Velychko, D. Endres, N. Taubert, M.A. Giese, Coupling Gaussian process dynamical models with product-of-experts kernels, in Proceedings of the 24th International Conference on Artificial Neural Networks. LNCS, vol. 8681 (Springer, Berlin, 2014), pp. 603–610Google Scholar
  86. 86.
    M. Vukobratovi\(\acute{c}\), Yu. Stepanenko, On the stability of anthropomorphic systems. Math. Biosci. 15, 1–37 (1972)Google Scholar
  87. 87.
    J.M. Wang, D.J. Fleet, A. Hertzmann, Multifactor Gaussian process models for style-content separation, in Proceedings of ICML (2007)Google Scholar
  88. 88.
    J.M. Wang, D.J. Fleet, A. Hertzmann, Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 283–298 (2008)Google Scholar
  89. 89.
    W. Wang, J.J.E. Slotine, On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern. 92(1), 38–53 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    Y. Wang, Z.-Q. Liu, L.-Z. Zhou, Learning style-directed dynamics of human motion for automatic motion synthesis, in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics (2006), pp. 4428–4433Google Scholar
  91. 91.
    W.H. Warren, The dynamics of perception and action. Psychol. Rev. 113(2), 358–389 (2006)CrossRefGoogle Scholar
  92. 92.
    M. Weigelt, T. Schack, The development of end-state comfort planning in preschool children. Exp. Psychol. 57(6), 476–782 (2010)CrossRefGoogle Scholar
  93. 93.
    A.P. Witkin, Z. Popovi\(\acute{c}\), Motion warping. Proc. ACM SIGGRAPH’95 29, 105–108 (1995)Google Scholar
  94. 94.
    K. Yamane, Y. Nakamura, Dynamics filter - concept and implementation of on-line motion generator for human figures, in Proceedings of IEEE International Conference on Robotics and Automation (2000), pp. 688–695Google Scholar
  95. 95.
    Y. Ye, C.K. Liu, Synthesis of responsive motion using a dynamic model. Comput. Gr. Forum (Proc. Eurographics) 29(2), 555–562 (2010)Google Scholar
  96. 96.
    E. Yoshida, A. Mallet, F. Lamiraux, O. Kanoun, O. Stasse, M. Poirier, P-F. Dominey, J.-P. Laumond, K. Yokoi, ‘Give me the Purple Ball’ – he said to HRP-2 N.14, in Proceedings of IEEE-RAS International Conference on Humanoid Robots (Humanoids’07) (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Albert Mukovskiy
    • 1
  • Nick Taubert
    • 1
  • Dominik Endres
    • 2
  • Christian Vassallo
    • 3
  • Maximilien Naveau
    • 3
  • Olivier Stasse
    • 3
  • Philippe Souères
    • 3
  • Martin A. Giese
    • 1
  1. 1.Section for Computational Sensomotorics, Department of Cognitive NeurologyHertie Institute for Clinical Brain Research & Center for Integrative Neuroscience, University Clinic TübingenTübingenGermany
  2. 2.Theoretical Neuroscience Group, Section for General and Biological Psychology, Department of PsychologyUniversity of MarburgMarburgGermany
  3. 3.Gepetto Lab, LAAS/CNRSUniversité de ToulouseToulouseFrance

Personalised recommendations